

— *Trieste* — 15 December 2023

THE QCD AXION: Some Like It Hot

MAURO VALLI

INFN Rome

A SISSA MOVIE

arXiv: 2310.08169

Minimal QCD Axion

Coupling required to "relax" the Strong CP problem, namely:

$$\frac{\pi}{n} \sum_{p=n}^{N} \sim \theta \, \frac{m_q}{m_N^2} \, e \sim \frac{10^{-2}}{\text{GeV}} \, e \sim 10^{-16} \, \text{cm} \cdot e \qquad \text{VS} \qquad d_n^{\text{exp}}$$

$$(\text{GeV}^{-1} \sim 10^{-14} \, \text{cm}) \qquad \lesssim 10^{-26} \, \text{cm} \cdot e$$

Minimal QCD Axion

It couples to Topological Charge Density:

 $Q \equiv \frac{\alpha_s}{8\pi f_a} G\widetilde{G}$

 $f_a = 5.7 \times 10^6 \,\text{GeV} \,(\text{eV}/m_a)$

[Grilli, Hardy, Pardo, Villadoro `16]

BSM contribution to Early Universe energy budget!

[Hook `21]

SPOILER: (Hot) Axions ~ Neutrinos

Neutrino cosmology 101

Radius of the Visible Universe

Minimal QCD Axion

Minimal QCD Axion

 $T_D [GeV]$

Planck

[Baumann, Green, Wallisch `16]

100

[Georgi, Kaplan, Randall `86]

(E_{π}) $\simeq \rho_{\pi}/n_{\pi} \simeq 3T \Rightarrow \sqrt{s} \gtrsim 500 \,\mathrm{MeV} @ T \sim 100 \,\mathrm{MeV}$

 $\Gamma_a^{(\text{NLO})} \sim \Gamma_a^{(\text{LO})} \text{ for } T > 70 \,\text{MeV}$ [Di Luzio, Martinelli, Piazza `21]

G.Villadoro @ GGI 23

General form of low energy axion QCD Lagrangian:

G.Piazza @ NP Signal 23

The IAM amplitude satisfies unitarity and has the correct low-energy expansion of ChPT up to $\mathcal{O}(p^4)$ IAM LECs from fit to $\pi\pi$ scatt. [Dobado, Pelaez 1997]

✓ Phases obtained in IAM correspond to phases of $\pi\pi$ scattering: Watson th.!

 $m_a \mid eV$

Why momentum-dependent Boltzmann?

High momenta k decouple later than low k. They see a lower g_* —> Greater $\Delta N_{\rm eff}$

2nd SPOILER ...

arXiv: 2207.13133

<code>BBN</code> is competitive with <code>CMB</code> to constrain $\Delta N_{
m eff}$

BBN ERA IN ΛCDM

Nucleosynthesis naively at $T_{nucl.} \sim B_D \simeq 2.2$ MeV ... BUT:

 $\Gamma(n+p \to D+\gamma) \sim n_B \langle \sigma v \rangle_{D\gamma}$ $\Gamma(n+p \leftarrow D+\gamma) \sim n_\gamma \exp(-B_D/T_\gamma) \langle \sigma v \rangle_{D\gamma}$

i.e., it really starts at T_{nucl} such that: $\eta_B \simeq \exp(-B_D/T_{nucl})$

BBN ERA IN ΛCDM

Deuterium "bottleneck" implies $T_{nucl.} \simeq 0.1$ MeV. After that :

~ all neutrons into helium-4

$$(n_n/n_p)|_{T\simeq 0.1 MeV} \simeq 1/7$$

$$Y_P \equiv \frac{m_{^4He}}{m_B} \simeq \frac{4(n_n/2)}{n_n + n_p} \simeq 0.25$$

Baryon mass fraction in helium-4

 $\mathcal{O}(10^{-5})$ residual amount of deuterium and helium-3 relative to p. Lithium-7 "survives" in smaller relative abundance, $\mathcal{O}(10^{-10})$.

Of course ... precise BBN predictions cannot be worked out by hand!

THE ASTROPHYSICAL JOURNAL, Vol. 148, April 1967

ON THE SYNTHESIS OF ELEMENTS AT VERY HIGH TEMPERATURES*

ROBERT V. WAGONER, WILLIAM A. FOWLER, AND F. HOYLE California Institute of Technology, Pasadena, California, and Cambridge University Received September 1, 1966 arXiv: 2307.07061

A new tool to investigate Big Bang Nucleosynthesis (BBN) within the Standard Model (SM) and Beyond (BSM)

Primordial ⁴He & D/H precisely measured: BBN precision tool

LO: easy-peasy in Born ... but finite mass effects + $O(\alpha)$ corrections relevant for precision!

PRIMAT code offers a wonderful ab-initio computation, but takes time ...

BLUE SWORD VS RED SWORD

Nuclear Rates $\langle \sigma v \rangle_{\text{nucl}}$

5-factor [eV b]

Nuclear net dependent also on $\eta(t)$

Existing codes implement own recipe for O(100) rates as function of T ...

Key reactions to study primordial light elements are only O(10).

Reason # 3

Even those vary from group to group though, unless data driven (LUNA)

Exploring these systematics crucial, but a ready-to-use tool been missing!

<u>Nature</u> 587, 210–213 (2020)

PRyMordial: Overview

- Featuring: simplified, but precise, method for ν decoupling ab-initio efficient computation of n <—> p
 - a customizable up-to-date nuclear network
 - several built-in options for New Physics

Meets precision for state-of-the-art SM predictions. Opens up uncharted territory for BSM in BBN era.

Fully Python-based, user-friendly & numerically fast ...

PRyMordial: wikiHow

PRyMordial Public	PRyMdemoNP.ipynb
	PRyMdemoSM.ipynb
ᢞ main ╺	README.md

BBN OBSERVATIONS

Primordial light elements predicted: D, 3He, 4He, 7Li

Helium-4 observed in extragalactic HII regions Emission spectra of gas clouds (detailed line modeling required)

Deuterium observed in Quasar absorption systems Damped Lyman- α spectra from intervening gas along l.o.s.

Helium-3 observed in the Solar neighborhood Solar winds, meteorites, ISM ... stellar nucleosynthesis uncertainties!

204.03167

Lithium-7 in the atmosphere of dwarf halo stars Physics of convection, depletion indicators ... needs support from data

PDG 2021: $Y_P = 0.245 \pm 0.003$

arXiv: 1710.11129

astro-ph/9803071

CMB temperature measurements

Recipe for a (reasonably) optimistic forecast:

(1) Axion initially in eq.: $Y_a(600 \,\mathrm{MeV}) \simeq Y_a^{\mathrm{eq}}(T_{\mathrm{EW}})$

(II) (Under)Estimate rate at non-zero momentum via:

$$n_a^{\rm eq} \,\overline{\Gamma}_a \gtrsim \frac{\Lambda_0^4}{4\pi^2 f_a^2} \left(\frac{T}{T_c}\right)^\epsilon \int_0^{3\alpha_s T} d|\mathbf{k}| |\mathbf{k}| \exp(-|\mathbf{k}|/T)$$

(III) Set initial condition @ T_c from: $\frac{dY_a}{dt} = \frac{\overline{\Gamma}_a}{H} (Y_a^{eq} - Y_a)$

arXiv: 2005.05290

🖀 cobaya

latest

Search docs

INSTALLATION AND QUICKSTART

Installing cobaya

Quickstart example

Advanced example

GENERAL TOPICS AND COMPONENTS

v: latest 🗸

Input and invocation

Output

Parameters and priors

Models: finer interaction with Cobaya's pipeline

Likelihoods

one likelihood

Read the Docs

The Art of Forecasts

C Edit on GitHub

Cobaya, a code for Bayesian analysis in Cosmology

Author:	Jesus Torrado ^C and Antony Lewis ^C
Source:	Source code at GitHub [™]
Documentation:	Documentation at Readthedocs [™]
Licence:	LGPL [™] + bug reporting asap + arXiv'ing [™] of publications using it (see
	LICENCE.txt [®] for details and exceptions). The documentation is licensed
	under the GFDL [♂] .
E-mail list:	https://cosmocoffee.info/cobaya/ ^C – sign up for important bugs and release announcements!
Support:	For general support, CosmoCoffee [™] ; for bugs and issues, use the issue tracker [™] .
Installation:	pip install cobayaupgrade (see the installation instructions [™] ; in general do not clone)

arXiv 2005.05290

Cobaya (code for bayesian analysis, and Spanish for *Guinea Pig*) is a framework for sampling and statistical modelling: it allows you to explore an arbitrary prior or posterior using a range of Monte Carlo samplers (including the advanced MCMC sampler from CosmoMC^C, and the advanced nested sampler PolyChord^C). The results of the sampling can be analysed with GetDist^C. It supports MPI parallelization (and very soon HPC containerization with Docker/Shifter and Singularity).

Cosmo Present & Future of QCD Axion

 \bigcirc

Take Home

Minimal QCD axion : "unavoidable" Hot Dark Matter

W/linear Cosmology + improved χ PT, we found :

 $m_a \le 0.16 \text{ eV} @ 95\%$ probability (CMB + LSS + BBN)

Promising future: cosmo bound competitive w/ current astro ones Crucial aspects for "what's next" :

- ★ < Q(x) Q(O) > @ the crossover
- \star Cosmology in the non-linear regime