
universitätbonn

Radiative corrections in $K \rightarrow \pi \ell^{+} \ell^{-}$ and related decays

Bastian Kubis
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)
Bethe Center for Theoretical Physics Universität Bonn, Germany
Working Group on Radiative Corrections
BINP Novosibirsk, 23/9/2011

BK, R. Schmidt, Eur. Phys. J. C70 (2010) 219

Contents

The physics case: $K \rightarrow \pi \ell^{+} \ell^{-}$
Some basics on radiative corrections

- infrared divergences and bremsstrahlung
- the soft-photon approximation

The KLN theorem and how to get around it

- Sudakov logarithms and phase space cuts

Collinear singularities and the restricted Dalitz plot

- where do the large logarithms come from?
- cuts on collinear photons

Conclusions

Let me try to get your attention. . .

Assume you couldn't care less about $K \rightarrow \pi \ell^{+} \ell^{-} \ldots$
... why should you still listen?

Let me try to get your attention...

Assume you couldn't care less about $K \rightarrow \pi \ell^{+} \ell^{-} \ldots$
... why should you still listen?
What are those "related decays" in the title?

Let me try to get your attention...

Assume you couldn't care less about $K \rightarrow \pi \ell^{+} \ell^{-} \ldots$
... why should you still listen?
What are those "related decays" in the title?

- it's really mainly about the $\ell^{+} \ell^{-}$part
- the radiative correction factors we calculated can directly be used also for $\omega \rightarrow \pi^{0} \ell^{+} \ell^{-}, \phi \rightarrow \eta \ell^{+} \ell^{-} \ldots$
- the non-trivial part concerns $e^{+} e^{-}$final states-

I believe the associated problems have not been appreciated in calculations of radiative corrections to
e.g. $\pi^{0} \rightarrow \gamma e^{+} e^{-}$

Kampf, Knecht, Novotný 2006
or $\pi^{0} \rightarrow e^{+} e^{-}$
Vaško, Novotný 2011

The physics case: $K \rightarrow \pi \ell^{+} \ell^{-}$

- flavour-changing neutral current process; rare: $\mathrm{BR}\left(K^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) \approx 3 \times 10^{-7}, \sim 10000$ events at BNL + NA48/2 $\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) \approx 8 \times 10^{-8}, \sim 3000$ events at NA48/2 $\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right) \approx 3 \times 10^{-9}$, handful of events at NA48/1 more to come from dedicated $K \rightarrow \pi \nu \bar{\nu}$ experiments (NA62 etc.)

The physics case: $K \rightarrow \pi \ell^{+} \ell^{-}$

- flavour-changing neutral current process; rare:
$\mathrm{BR}\left(K^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) \approx 3 \times 10^{-7}, \sim 10000$ events at BNL + NA48/2
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) \approx 8 \times 10^{-8}, \sim 3000$ events at NA48/2
$\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right) \approx 3 \times 10^{-9}$, handful of events at NA48/1 more to come from dedicated $K \rightarrow \pi \nu \bar{\nu}$ experiments (NA62 etc.)
- Standard Model: one-loop, penguins $s \rightarrow d \gamma^{*}$:

$\triangleright K \rightarrow \pi \gamma$ forbidden by gauge invariance
$\triangleright K \rightarrow \pi \gamma^{*}$ form factor $\bar{F}(s) \propto s$ \Rightarrow essentially point-like $K \pi \ell^{+} \ell^{-}$vertex

The physics case: $K \rightarrow \pi \ell^{+} \ell^{-}$

- flavour-changing neutral current process; rare:
$\mathrm{BR}\left(K^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) \approx 3 \times 10^{-7}, \sim 10000$ events at BNL + NA48/2
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) \approx 8 \times 10^{-8}, \sim 3000$ events at NA48/2
$\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right) \approx 3 \times 10^{-9}$, handful of events at NA48/1 more to come from dedicated $K \rightarrow \pi \nu \bar{\nu}$ experiments (NA62 etc.)
- Standard Model: one-loop, penguins $s \rightarrow d \gamma^{*}$:

$\triangleright K \rightarrow \pi \gamma$ forbidden by gauge invariance
$\triangleright K \rightarrow \pi \gamma^{*}$ form factor $\bar{F}(s) \propto s$ \Rightarrow essentially point-like $K \pi \ell^{+} \ell^{-}$vertex
- Chiral perturbation theory: leading contribution at one loop

Ecker, Pich, de Rafael 1987
$\triangleright \mathcal{L}_{\Delta S=1, \mathrm{em}}$ low-energy constants
$\triangleright \pi^{+} \pi^{-}$P-wave only non-analytic piece
\triangleright "effective" $\mathcal{O}\left(p^{6}\right)$ calculation
D’Ambrosio, Ecker, Isidori, Portolés 1998
$K(k) \rightarrow \pi(p) \ell^{+}\left(p_{+}\right) \ell^{-}\left(p_{-}\right)$, dilepton spectrum
$s=(k-p)^{2}=\left(p_{+}+p_{-}\right)^{2}, \quad t=\left(p+p_{-}\right)^{2}, \quad u=\left(p+p_{-}\right)^{2}$

- essential form factor information resides in $d \Gamma / d s$:
$\frac{d \Gamma}{d s}=\frac{\alpha^{2}|F(s)|^{2}}{3(4 \pi)^{5} M_{K}^{7}} \lambda^{3 / 2}\left(M_{K}^{2}, s, M_{\pi}^{2}\right) \sqrt{1-\frac{4 m_{\ell}^{2}}{s}}\left(1+\frac{2 m_{\ell}^{2}}{s}\right)(1+\Delta \Omega)$
radiative corrections expressed in terms of $\Delta \Omega=\mathcal{O}(\alpha)$
$K(k) \rightarrow \pi(p) \ell^{+}\left(p_{+}\right) \ell^{-}\left(p_{-}\right)$, dilepton spectrum

$$
s=(k-p)^{2}=\left(p_{+}+p_{-}\right)^{2}, \quad t=\left(p+p_{-}\right)^{2}, \quad u=\left(p+p_{-}\right)^{2}
$$

- essential form factor information resides in $d \Gamma / d s$:

$$
\frac{d \Gamma}{d s}=\frac{\alpha^{2}|F(s)|^{2}}{3(4 \pi)^{5} M_{K}^{7}} \lambda^{3 / 2}\left(M_{K}^{2}, s, M_{\pi}^{2}\right) \sqrt{1-\frac{4 m_{\ell}^{2}}{s}}\left(1+\frac{2 m_{\ell}^{2}}{s}\right)(1+\Delta \Omega)
$$

radiative corrections expressed in terms of $\Delta \Omega=\mathcal{O}(\alpha)$

Some general basics on radiative corrections

- (virtual) photon loops contain infrared divergences:

$$
\xlongequal[p_{-}-l]{p_{+}^{+} l} \sum_{p_{-}^{2}=m^{2}}^{p_{+}^{2}=m^{2}} \propto \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{1}{\left[\left(p_{+}+l\right)^{2}-m^{2}\right]\left[\left(p_{-}-l\right)^{2}-m^{2}\right] l^{2}}
$$

Some general basics on radiative corrections

- (virtual) photon loops contain infrared divergences:

$$
\xlongequal[p_{-}-1]{p_{+}^{++l} \sum_{p_{-}^{2}=m^{2}}^{p_{+}^{2}=m^{2}} \propto \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{1}{\left[2 p_{+} l+l^{2}\right]\left[-2 p_{-} l+l^{2}\right] l^{2}} \sim \int \frac{d^{4} l}{l^{4}}}
$$

regulate with finite photon mass $m_{\gamma} \Rightarrow \log \frac{m_{\gamma}}{m}$ terms

Some general basics on radiative corrections

- (virtual) photon loops contain infrared divergences:

regulate with finite photon mass $m_{\gamma} \Rightarrow \log \frac{m_{\gamma}}{m}$ terms
- add bremsstrahlung (finite detector resolution!)

combine both contributions to $\log \frac{E_{\text {max }}}{m} \Rightarrow$ infrared finite!

Some general basics on radiative corrections

- (virtual) photon loops contain infrared divergences:

regulate with finite photon mass $m_{\gamma} \Rightarrow \log \frac{m_{\gamma}}{m}$ terms
- add bremsstrahlung (finite detector resolution!)

combine both contributions to $\log \frac{E_{\text {max }}}{m} \Rightarrow$ infrared finite!
- vast simplification: "soft-photon approximation" neglect l except in the denominators: $\int_{m_{\gamma}}^{E_{\text {max }}} \frac{d^{3} l}{l^{3}} l \propto E_{\text {max }}-m_{\gamma}$ neglects terms of $\mathcal{O}\left(E_{\text {max }}\right)$, correct including $\mathcal{O}\left(E_{\text {max }}^{0}\right)$

$K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-}$, soft-photon approximation

- dominated by Coulomb singularity $\propto \frac{\alpha}{\sqrt{s-4 m_{\mu}^{2}}}$, otherwise small
- loop corrections ultraviolet-finite, no counterterm required

$K_{S} \rightarrow \pi^{0} e^{+} e^{-}$, soft-photon approximation

- huge radiative corrections - why??
- characteristic width of Coulomb pole $m_{e}^{2} \Rightarrow$ hardly visible
$K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-}$, no soft-photon approximation

- corrections to soft-photon approximation (dashed) below 0.2%
$K_{S} \rightarrow \pi^{0} e^{+} e^{-}$, no soft-photon approximation

- corrections to soft-photon approximation (dashed) sizeable
- overall correction factor still very large

The KLN theorem and mass singularities

- enhancement of $e^{+} e^{-}$vs. $\mu^{+} \mu^{-}$: mass singularity??
- Kinoshita-Lee-Nauenberg theorem:
no mass singularities in total/inclusive transition probabilities

The KLN theorem and mass singularities

Kinoshita 1962; Lee, Nauenberg 1964

- enhancement of $e^{+} e^{-}$vs. $\mu^{+} \mu^{-}$: mass singularity??
- Kinoshita-Lee-Nauenberg theorem: no mass singularities in total/inclusive transition probabilities

$$
\begin{gathered}
\Delta \Omega_{e^{+} e^{-}}=\frac{\alpha}{\pi}\left\{\frac{1}{4}-2\left[\log \epsilon+\frac{(1-\epsilon)(3-\epsilon)}{4}\right] \log \delta-2 \log \epsilon+\frac{\pi^{2}}{3}-2 \operatorname{Li}(\epsilon)\right. \\
\left.+\frac{1-\epsilon}{2}\left[(3-\epsilon) \log (1-\epsilon)-\frac{11-3 \epsilon}{2}\right]\right\}+\mathcal{O}\left(m_{e}\right) \\
\epsilon=\frac{2 E_{\max }}{\sqrt{s}} \quad \delta=\frac{m_{e}^{2}}{s}
\end{gathered}
$$

The KLN theorem and mass singularities

Kinoshita 1962; Lee, Nauenberg 1964

- enhancement of $e^{+} e^{-}$vs. $\mu^{+} \mu^{-}$: mass singularity??
- Kinoshita-Lee-Nauenberg theorem:
no mass singularities in total/inclusive transition probabilities

$$
\begin{gathered}
\Delta \Omega_{e^{+} e^{-}}=\frac{\alpha}{\pi}\left\{\frac{1}{4}-2\left[\log \epsilon+\frac{(1-\epsilon)(3-\epsilon)}{4}\right] \log \delta-2 \log \epsilon+\frac{\pi^{2}}{3}-2 \operatorname{Li}(\epsilon)\right. \\
\left.+\frac{1-\epsilon}{2}\left[(3-\epsilon) \log (1-\epsilon)-\frac{11-3 \epsilon}{2}\right]\right\}+\mathcal{O}\left(m_{e}\right) \\
\epsilon=\frac{2 E_{\max }}{\sqrt{s}} \quad \delta=\frac{m_{e}^{2}}{s}
\end{gathered}
$$

- inclusive limit $\epsilon \rightarrow 1 \Rightarrow$ all $\log \delta$ terms vanish, $\Delta \Omega_{\mathrm{incl}}=\frac{\alpha}{4 \pi}$
- mass singularities $\propto \log \delta$ present for $\epsilon<1$
- soft-photon approximation: neglect $\mathcal{O}(\epsilon)$ terms
\Rightarrow no $\log \delta$ cancellation for $\epsilon \rightarrow 1$
$\boldsymbol{K}_{S} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{e}^{+} \boldsymbol{e}^{-}(\gamma)$ inclusive

- the more inclusive the bremsstrahlung, the smaller the correction

Collinear singularities and the restricted Dalitz plot

- origin of mass singularities in bremsstrahlung well understood:

$$
\begin{array}{r}
\frac{1}{p l}=\frac{1}{\left(p^{0}-|\mathbf{p}| z\right)|\mathbf{l}|} \stackrel{m_{e} \rightarrow 0}{=} \frac{1}{|\mathbf{p}||\mathbf{1}|(1-z)} \\
p^{0}=\sqrt{\mathbf{p}^{2}+m_{e}^{2}}, \text { diverges for } z=\cos \theta_{e \gamma} \rightarrow 1
\end{array}
$$

- collinear singularity for radiation of photons off light particles

Collinear singularities and the restricted Dalitz plot

- origin of mass singularities in bremsstrahlung well understood:

$$
\frac{1}{p l}=\frac{1}{\left(p^{0}-|\mathbf{p}| z\right)|\mathbf{l}|} \stackrel{m_{e} \rightarrow 0}{=} \frac{1}{|\mathbf{p}||\mathbf{l}|(1-z)}
$$

$$
p^{0}=\sqrt{\mathbf{p}^{2}+m_{e}^{2}} \text {, diverges for } z=\cos \theta_{e \gamma} \rightarrow 1
$$

- collinear singularity for radiation of photons off light particles
- experimentally: cannot discriminate collinear photons (as one cannot discriminate soft photons) \Rightarrow have to cut on $\theta_{e \gamma}$
- hard collinear photons lead to mass singularities $\propto \log m_{e}$ unphysically enhanced radiative corrections shown so far

Collinear singularities and the restricted Dalitz plot

- origin of mass singularities in bremsstrahlung well understood:

$$
\frac{1}{p l}=\frac{1}{\left(p^{0}-|\mathbf{p}| z\right)|\mathbf{l}|} \stackrel{m_{e} \rightarrow 0}{=} \frac{1}{|\mathbf{p}||\mathbf{l}|(1-z)}
$$

$$
p^{0}=\sqrt{\mathbf{p}^{2}+m_{e}^{2}} \text {, diverges for } z=\cos \theta_{e \gamma} \rightarrow 1
$$

- collinear singularity for radiation of photons off light particles
- experimentally: cannot discriminate collinear photons (as one cannot discriminate soft photons) \Rightarrow have to cut on $\theta_{e \gamma}$
- hard collinear photons lead to mass singularities $\propto \log m_{e}$ unphysically enhanced radiative corrections shown so far
- consider Dalitz plot for sub-decay

$$
\begin{aligned}
& \gamma^{*}(\sqrt{s}) \rightarrow e^{+}\left(p_{+}\right) e^{-}\left(p_{-}\right) \gamma(l), \quad s_{1 / 2}=\left(p_{\mp}+l\right)^{2}, \quad s_{3}=\left(p_{+}+p_{-}\right)^{2} \\
& s_{1}+s_{2}+s_{3}=s+2 m_{e}^{2} \approx s
\end{aligned}
$$

Dalitz plot:

Dalitz plot: one massless particle

Dalitz plot: three (nearly) massless particles

Dalitz plot: three (nearly) massless particles

$K_{S} \rightarrow \pi^{0} e^{+} e^{-}(\gamma)$, angular cut

$$
\Delta \Omega_{e^{+} e^{-}}=\frac{\alpha}{\pi}\left\{\frac{1}{4}-2\left[\log \epsilon+\frac{(1-\epsilon)(3-\epsilon)}{4}\right] \log \mu+\ldots\right\}, \quad \mu=\frac{1-\cos \theta_{e \gamma}}{2}
$$

- $E_{\gamma}^{\text {cut }}=20 \mathrm{MeV}$ fixed
- note: $\log \delta \rightarrow \log \mu$
- mass singularity translated into phase space singularity (RG resummation of phase space logs in SCET...)
- note: $\log \frac{m_{e}^{2}}{s} \approx-13$ $\log \frac{1-\cos 20^{\circ}}{2} \approx-3.5$
- approximation $m_{e}=0$ (dashed) very accurate

Dalitz plot: three (nearly) massless particles

Dalitz plot: three (nearly) massless particles

$\boldsymbol{K}_{S} \rightarrow \pi^{0} e^{+} e^{-}(\gamma), \boldsymbol{\theta}_{e^{+} e^{-}}$cut

- all singular parts of the bremsstrahlung (soft + collinear) occur for $e^{+} e^{-}$back to back \Rightarrow single cut on $\theta_{e^{+} e^{-}}$can cure both
- dimensionless cut $\Rightarrow \Delta \Omega_{e^{+} e^{-}}$constant in massless limit (dashed)

Summary / Conclusions

- Don't use the soft-photon approximation for $e^{+} e^{-}$final states!
\triangleright hard collinear photons lead to enhanced logarithms
\triangleright their coefficients not reproduced in the soft approximation
\triangleright angular cuts (on $\theta_{e \gamma}$ or $\theta_{e^{+} e^{-}}$) required
\triangleright compact analytic forms available in the massless limit
- $\mu^{+} \mu^{-}$final states simpler, soft approximation justified
- radiative corrections for the dilepton spectrum $d \Gamma / d s$ are simple sums of corrections to hadronic and leptonic current
- no ultraviolet counterterms required
- universal correction factors $\Delta \Omega$ for dilepton spectra identical for vector meson conversion decays $\omega \rightarrow \pi^{0} \ell^{+} \ell^{-}, \phi \rightarrow \eta \ell^{+} \ell^{-}$etc.
- consequences for existing studies of Dalitz decays $\pi^{0}, \eta \rightarrow \gamma e^{+} e^{-}$should be investigated

Spares

Hadronic-current corrections: $\boldsymbol{K}^{+} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

- additional contribution to $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$increases $\Delta \Omega\left(K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right)$by $1-1.5 \%$
$K_{S} \rightarrow \pi^{0} e^{+} e^{-}(\gamma)$, small-mass approximation

- $\log m_{e}$ enhanced terms totally dominate

$\ell^{+} \ell^{-}$or $t-u$ asymmetry

- radiative corrections linking leptonic and hadronic current are odd in $\nu \doteq t-u \quad \Rightarrow$ cancel in $d \Gamma / d s$

$$
A_{\nu}(s)=\left(\frac{d \Gamma}{d s}\right)^{-1} \int d \nu \operatorname{sgn}(\nu) \frac{d^{2} \Gamma}{d s d \nu}
$$

