VP reloaded

Thomas Teubner

- . Introduction
- .. HLMNT routine; status and comparison with other Vacuum Polarisation compilations
- ... Latest changes
- Narrow resonances: treatment and pitfalls

Introduction

• Why Vacuum Polarisation / running lpha corrections ?

Precise knowledge of VP / $\alpha(q^2)$ needed for:

- Corrections for data used as input for g-2: 'undressed' $\sigma_{\rm had}^0$ $a_{\mu}^{\rm had,LO} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\rm had}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$
- Determination of α_s and quark masses from total hadronic cross section $R_{\rm had}$ at low energies and of resonance parameters.
- Part of higher order corrections in Bhabha scattering important for precise Luminosity determination.
- $\alpha(M_Z^2)$ a fundamental parameter at the Z scale (the least well known of $\{G_\mu, M_Z, \alpha(M_Z^2)\}$), needed to test the SM via precision fits/constrain new physics.
- → Ingredient in MC generators for many processes.

• Dyson summation of Real part of one-particle irreducible blobs Π into the effective, real running coupling $\alpha_{\rm QED}$:

$$\Pi = \bigvee_{q}^{r} \bigvee_{q}$$

Full photon propagator $\sim 1 + \Pi + \Pi \cdot \Pi + \Pi \cdot \Pi \cdot \Pi + \dots$

$$\sim \alpha(q^2) = \frac{\alpha}{1 - \text{Re}\Pi(q^2)} = \alpha / (1 - \Delta\alpha_{\text{lep}}(q^2) - \Delta\alpha_{\text{had}}(q^2))$$

• The Real part of the VP, Re Π , is obtained from the Imaginary part, which via the *Optical Theorem* is directly related to the cross section, Im $\Pi \sim \sigma(e^+e^- \to hadrons)$:

$$\Delta \alpha_{\rm had}^{(5)}(q^2) = -\frac{q^2}{4\pi^2 \alpha} P \int_{m_{\pi}^2}^{\infty} \frac{\sigma_{\rm had}^0(s) \, \mathrm{d}s}{s - q^2} , \quad \sigma_{\rm had}(s) = \frac{\sigma_{\rm had}^0(s)}{|1 - \Pi|^2}$$

 $[\to \sigma^0$ requires 'undressing', e.g. via $\cdot (\alpha/\alpha(s))^2 \rightsquigarrow$ iteration needed]

- Observable cross sections σ_{had} contain the |full photon propagator|², i.e. |infinite sum|².
 - \rightarrow To include the subleading Imaginary part, use dressing factor $\frac{1}{|1-\Pi|^2}$.

HLMNT routine; status and comparison

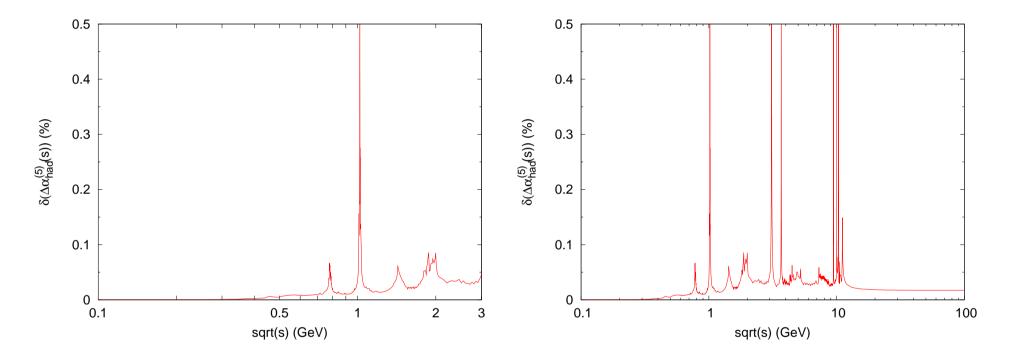
Features of the HLMNT VP code

new version based on HLMNT '11 imminent

- Latest version is VP_HLMNT_v2_0, version 2.0, 15 July 2010
- Simple set of (standard) Fortran routines; completely standalone, no libs needed; all explanations in comment-headers
- Gives separately real and imaginary part ($\Delta \alpha(s)$ and R(s))
- Tabulation/interpolation of hadronic part, for both space- and time-like region, including errors; no input data files or rhad installation needed
- Leptonic part coded analytically; all special function included (partly with custom made expansions)
- top contribution in the same way
- \rightarrow Flag to include or exclude narrow resonances J/ψ , ψ' , $\Upsilon(1-6S)$ [but ϕ always included via integral over final state data $(3\pi, KK)$]

• Typical accuracy $\delta\left(\Delta\alpha_{\mathrm{had}}^{(5)}(s)\right)$

Error of VP in the timelike regime at low and higher energies (HLMNT compilation):

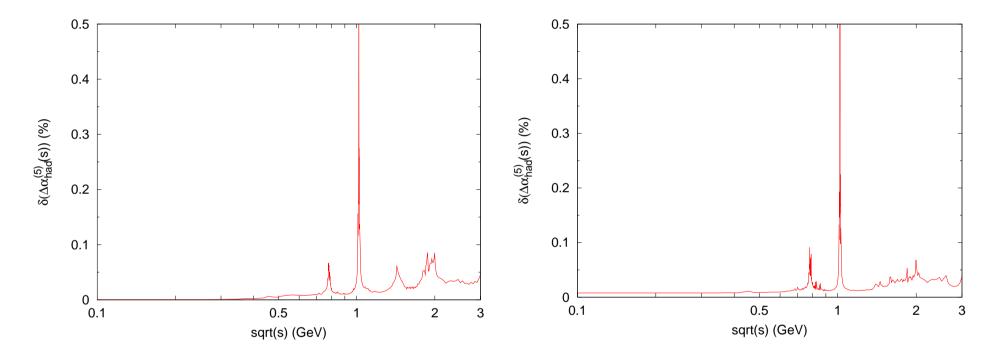


 \rightarrow Below one per-mille (and typically $\sim 5 \cdot 10^{-4}$), apart from Narrow Resonances where the bubble summation is not well justified.

Enough in the long term? Need for more work in resonance regions.

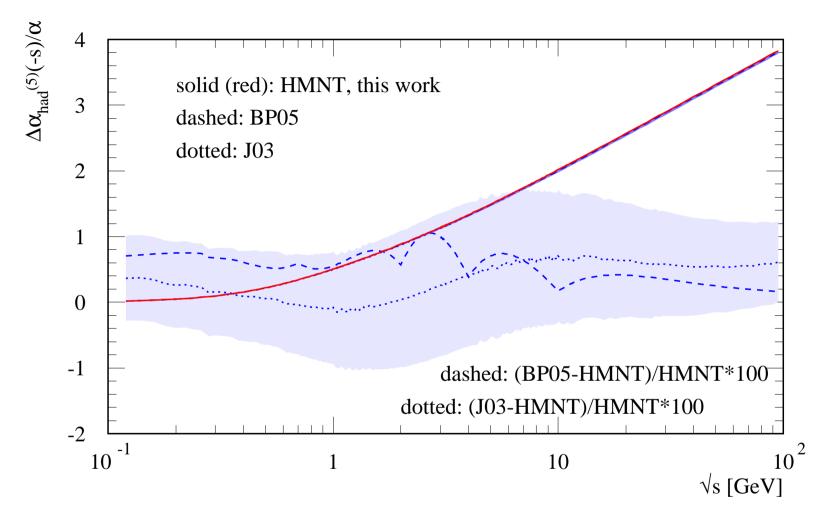
• Typical accuracy $\delta\left(\Delta\alpha_{\mathrm{had}}^{(5)}(s)\right)$

Error of VP in the timelike regime: old vs. new HLMNT '11 compilation):



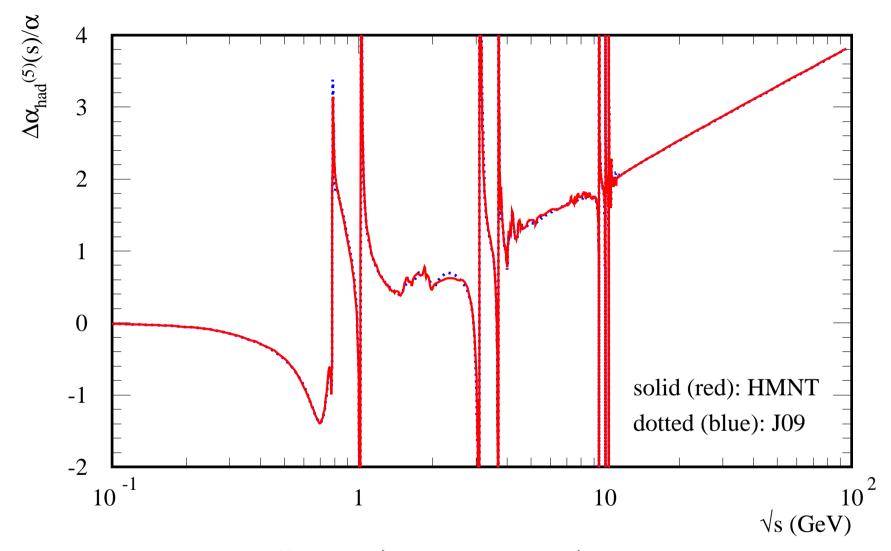
 \rightarrow region $1 < \sqrt{s} < 2$ GeV (and higher) improved, ρ suffers from tension in 2π data (BaBar included).

• Comparison of Spacelike $\Delta \alpha_{\rm had}^{(5)}(-s)/\alpha$ (smooth $\alpha(q^2<0)$)

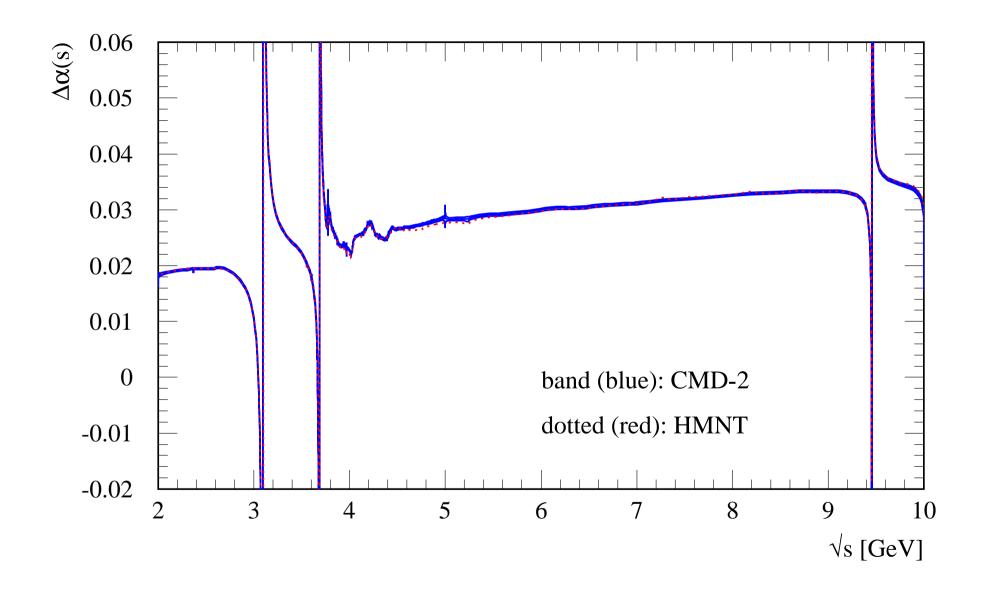


- Differences between parametrisations clearly visible but within error band (of HLMNT)
- Few-parameter formula from Burkhardt+Pietrzyk slightly 'bumpy' but still o.k.
- Encourage use of more accurate recent tabulations; $\Delta \alpha(M_Z^2)$

ullet $\Delta lpha(q^2)$ in the time-like: HLMNT compared to Fred Jegerlehner's new routines



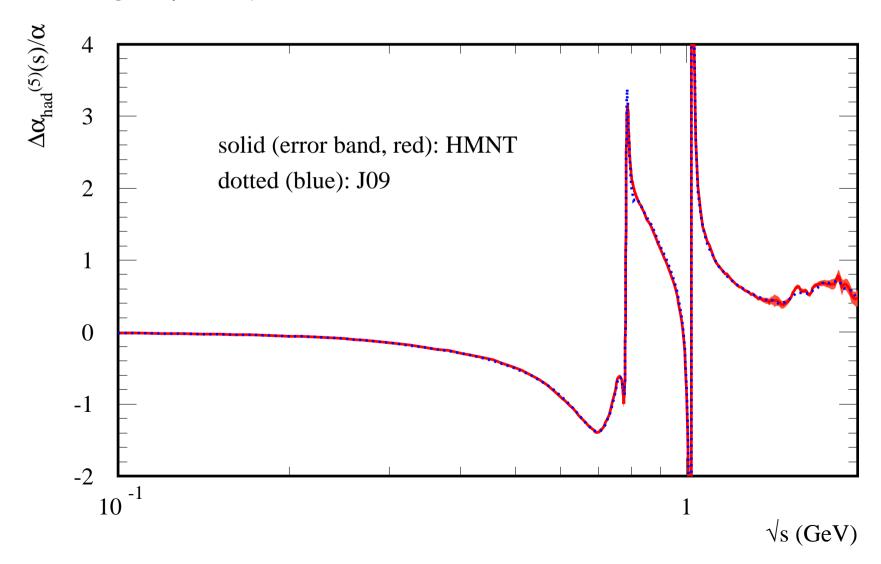
- → with new version big differences (with 2003 version) gone
 - smaller differences remain and reflect different choices, smoothing etc.



More comparison plots...

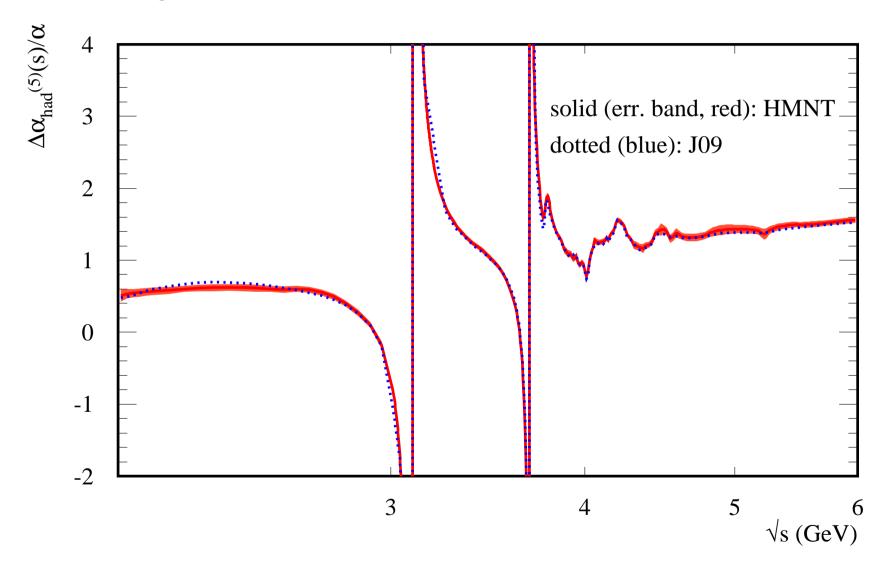
HLMNT compared to Fred Jegerlehner's new version: Detailed look

Low energies: ho and ϕ



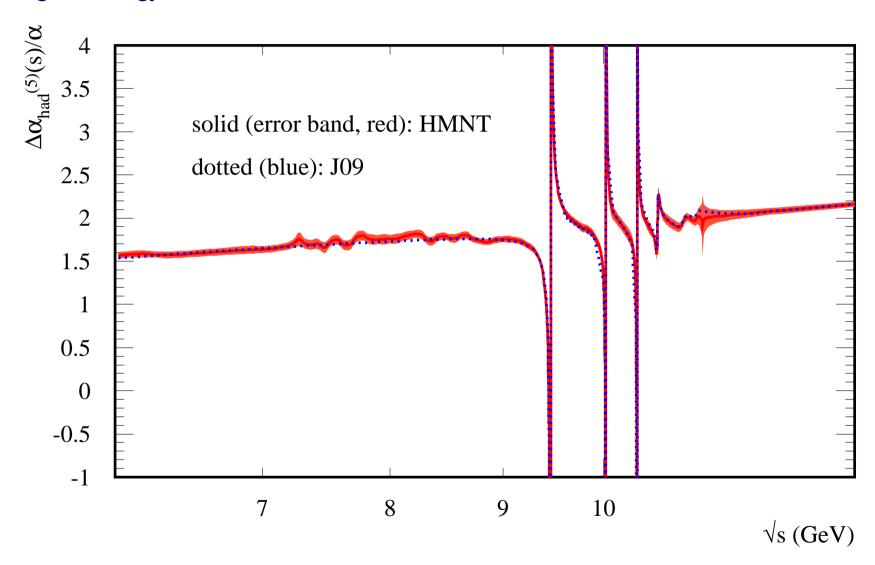
HLMNT compared to Fred Jegerlehner's new version: Detailed look

Medium energies: continuum and charm

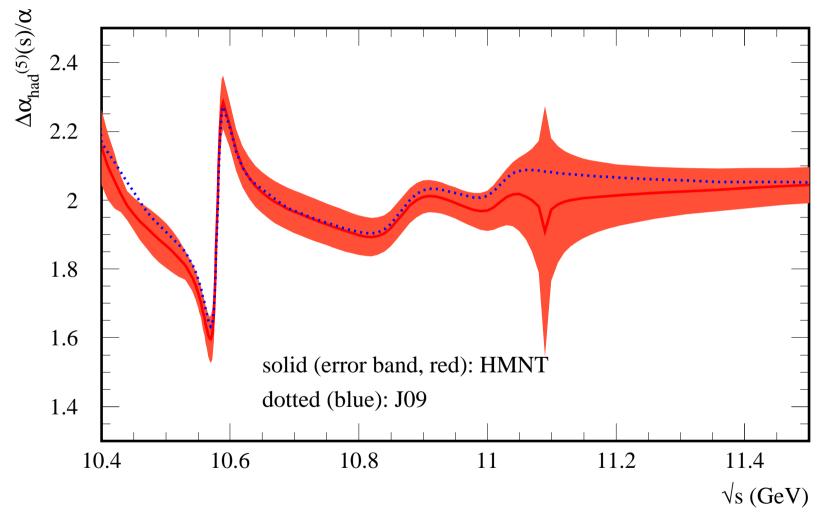


HLMNT compared to Fred Jegerlehner's new version: Detailed look

Higher energy continuum; bottom



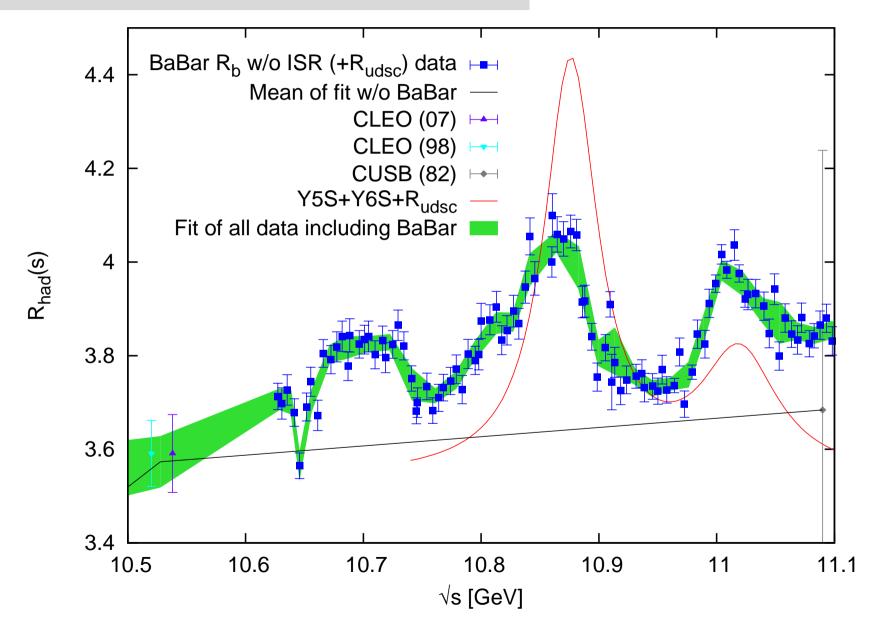
Details of higher $\Upsilon(4,5,6S)$ [10580, 10860, 11020] / open bottom region



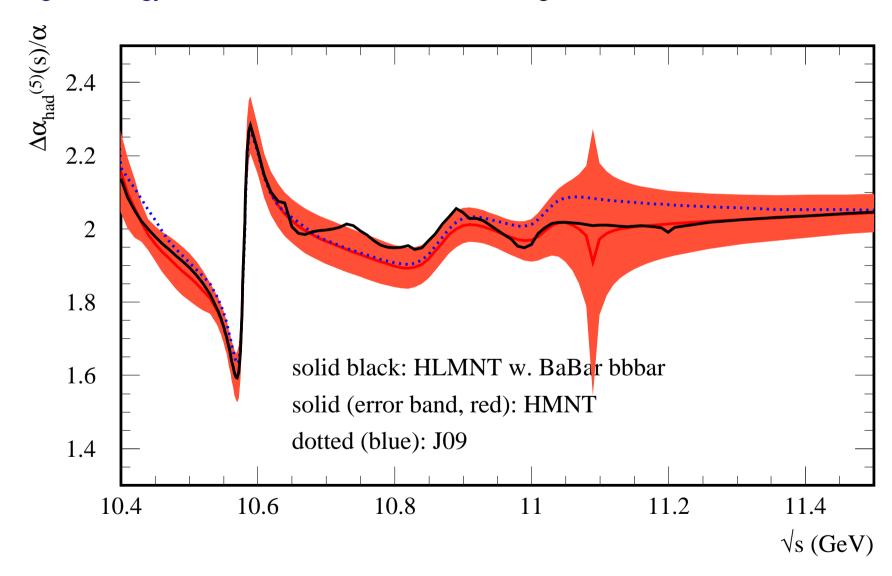
- ightarrow HLMNT still to include BaBar's $R_{b\bar{b}}$ data; ISR unfolding.. work in progress \checkmark
- expected to smooth and improve region above $11~{\rm GeV}~\checkmark$

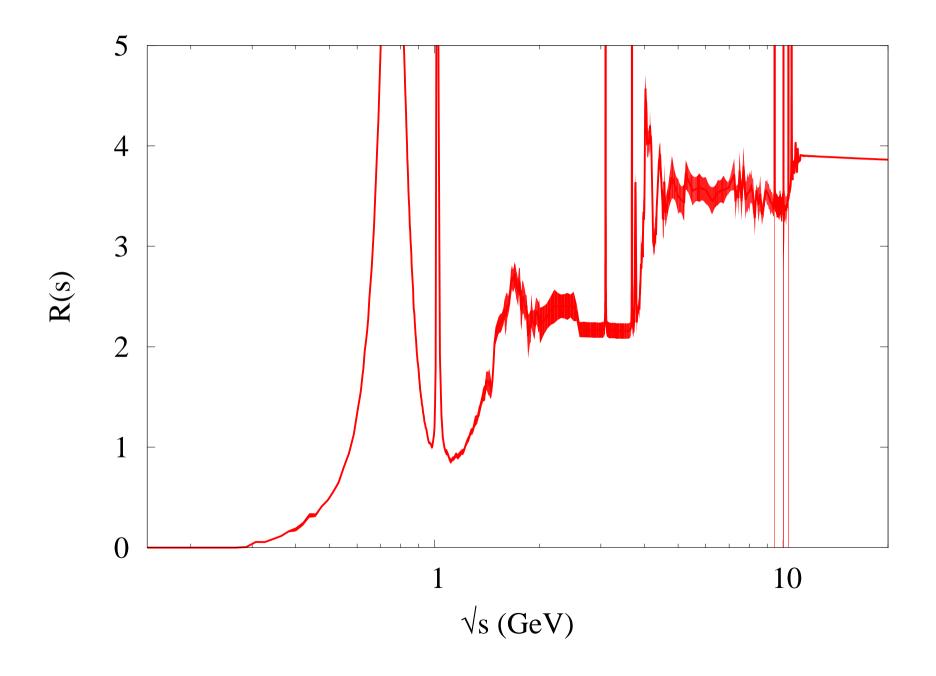
Latest changes

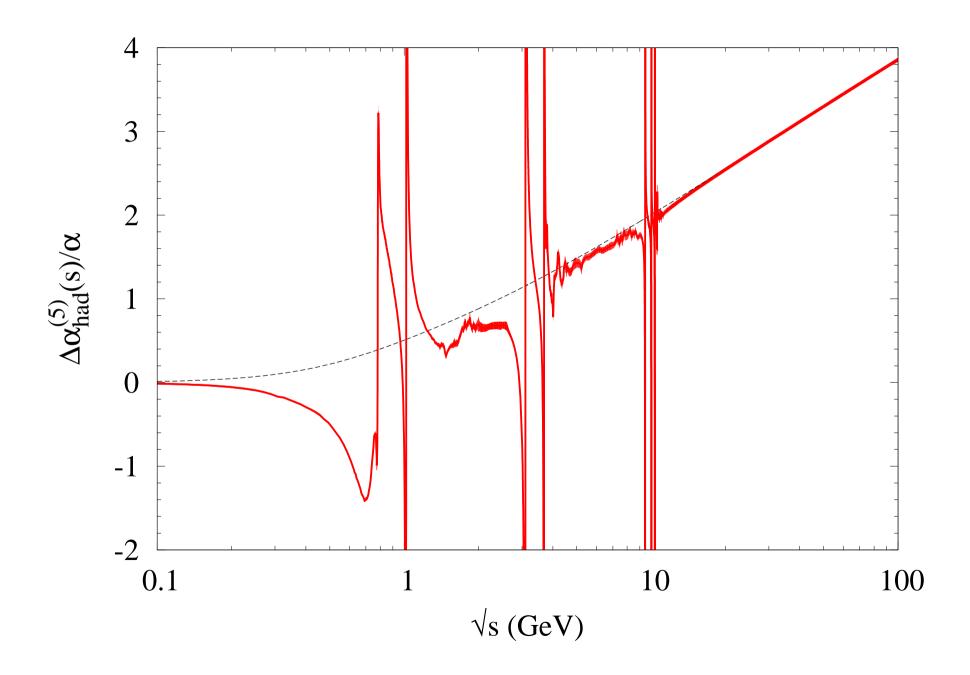
Inclusion of BaBar's $b\bar{b}$ after ISR deconvolution



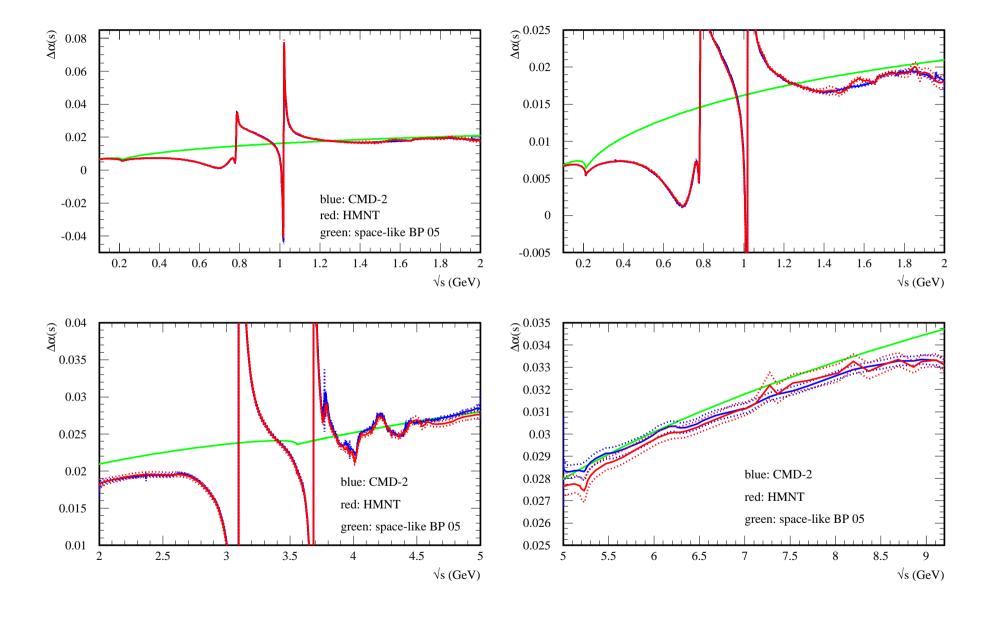
Higher energy continuum; bottom. No smoothing!



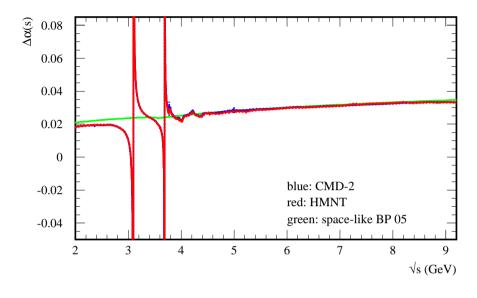


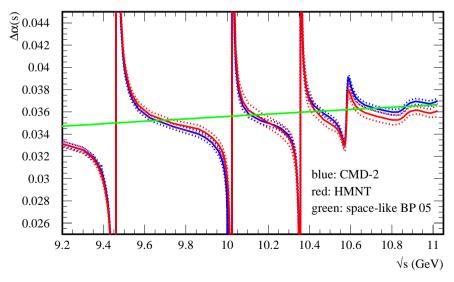


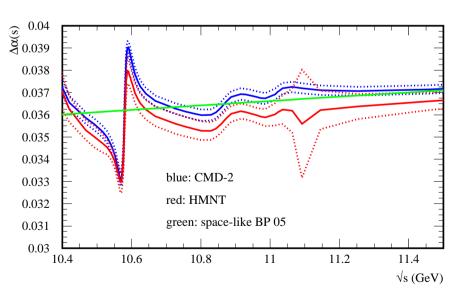
HLMNT compared to CMD-2's routine: Detailed looks



HLMNT compared to CMD-2's routine: three more zooms







Narrow Resonances: treatment and pitfalls

Note 1:

- For $\Delta \alpha$ or g-2, using NR or BW formulae with the dressed width Γ_{ee} for a resonance V is inconsistent and introduces sizeable effects (a few percent).
- Undressing via the smooth spacelike running $\alpha(-M_V)$ comes closer numerically but is not fully correct.
- Use undressing formula

$$\Gamma_{ee}^{0} = \frac{\left[\alpha/\alpha_{\text{no}V}(M_{V}^{2})\right]^{2}}{1+3\alpha/(4\pi)} \Gamma_{ee},$$

where 'no V' means that the resonance V is excluded from the running α .

Note 2:

- Close to narrow resonance energies $|\Pi| \sim 1$ and the summation breaks down
- \hookrightarrow Need other formulation, e.g. Breit-Wigner resonance propagator interfering with γ :

$$\left(\frac{\alpha(s)}{s}\right)^2 \rightarrow \frac{1}{s^2} \left| \alpha_{\text{no} V}(s) + \frac{3\Gamma_{ee}M_V}{s - M_V^2 + i\Gamma M_V} \right|^2.$$

Extras:

Comparison of different compilations

ullet Timelike lpha(s) from Fred Jegerlehner's (2003 routine as available from his web-page)

$$\alpha(s = E^2) = \alpha / \left(1 - \Delta\alpha_{\text{lep}}(s) - \Delta\alpha_{\text{had}}^{(5)}(s) - \Delta\alpha^{\text{top}}(s)\right)$$

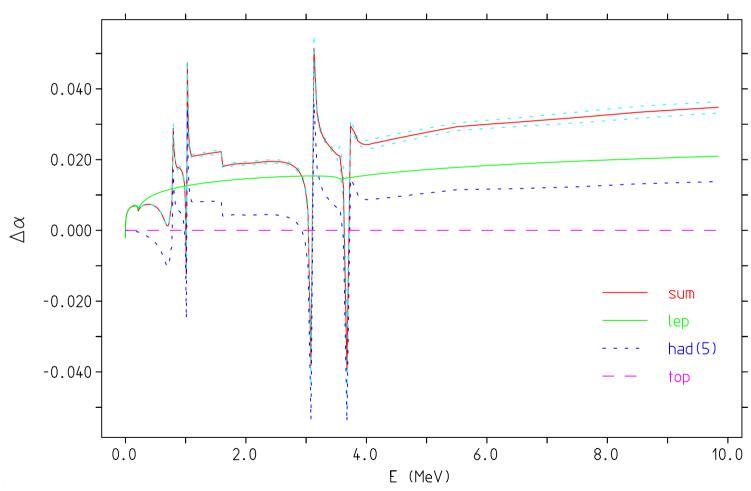
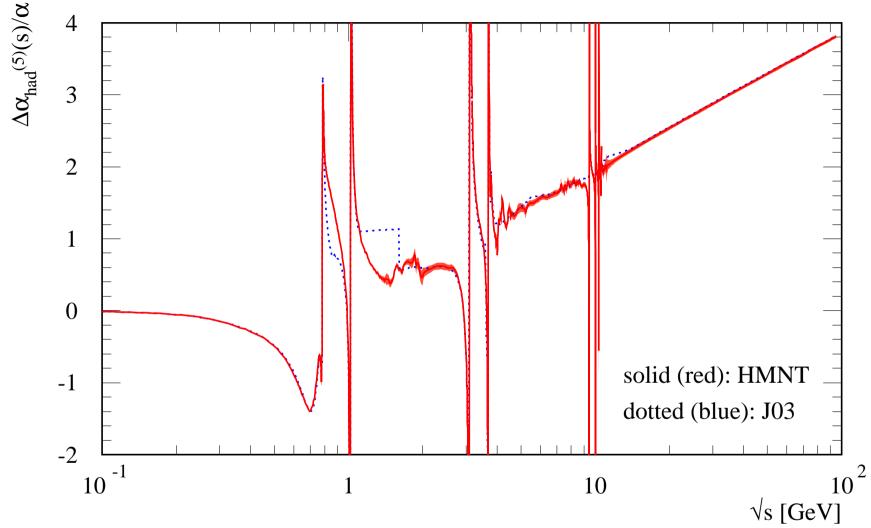


Figure from Fred Jegerlehner

Timelike $\alpha(s=q^2>0)$ follows resonance structure:

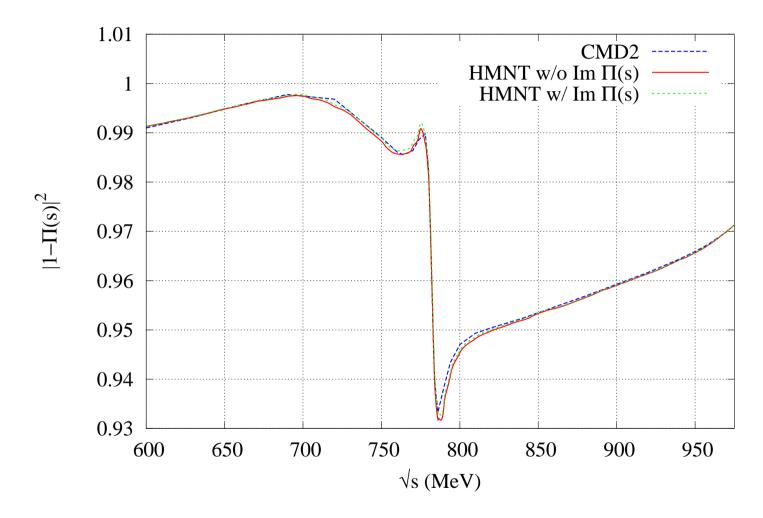


- Step below just a feature of unfortunate grid.
- Difference below 1 GeV not expected from data.

[Comparisons with other parametrisations confirm HMNT.]

HMNT compared to Novosibirsk's parametrisation

Timelike $|1 - \Pi(s)|^2 \sim (\alpha(s)/\alpha)^2$ in ρ central energy region: A relevant correction!



→ Small but visible differences, as expected from independent compilations.

ullet What about $\Delta lpha(M_Z^2)$?

Obsolete/dated!!!

 \longrightarrow With the same data compilation of $\sigma_{\rm had}^0$ as for g-2 HLMNT find:

$$\Delta lpha_{
m had}^{(5)}(M_Z^2) = 0.02760 \pm 0.00015$$
 (HLMNT 09 prelim.) i.e. $lpha(M_Z^2)^{-1} = 128.947 \pm 0.020$ [HMNT '06: $lpha(M_Z^2)^{-1} = 128.937 \pm 0.030$]

Earlier compilations:

Group	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	remarks
Burkhardt+Pietrzyk '05	0.02758 ± 0.00035	data driven
Troconiz+Yndurain '05	0.02749 ± 0.00012	pQCD
Kühn+Steinhauser '98	0.02775 ± 0.00017	pQCD
Jegerlehner '08	0.027594 ± 0.000219	data driven/pQCD
$(M_0 = 2.5 \text{ GeV})$	0.027515 ± 0.000149	Adler fct, pQCD
HMNT '06	0.02768 ± 0.00022	data driven

Adler function:
$$D(-s) = \frac{3\pi}{\alpha} s \frac{\mathrm{d}}{\mathrm{d}s} \Delta \alpha(s) = -(12\pi^2) s \frac{\mathrm{d}\Pi(s)}{\mathrm{d}s}$$

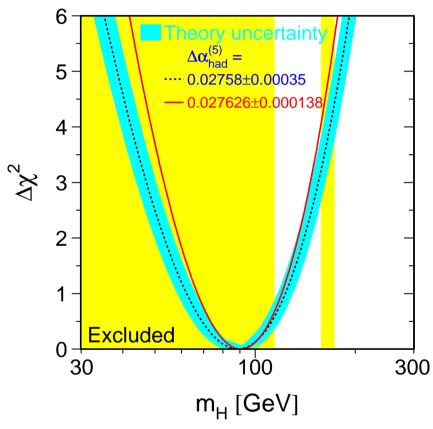
allows use of pQCD and minimizes dependence on data.

The running QED coupling $\alpha(M_Z^2)$

... and the Higgs mass

- Vacuum polarisation leads to the 'running' of $\alpha \ \text{from} \ \alpha(q^2=0) = 1/137.035999084(51)$ to $\alpha(q^2=M_Z^2) \sim 1/129$
- $\alpha(q^2) = \alpha / (1 \Delta \alpha_{\text{lep}}(q^2) \Delta \alpha_{\text{had}}(q^2))$
- Again use of a dispersion relation: $\Delta\alpha_{\rm had}^{(5)}(q^2) = -\frac{\alpha q^2}{3\pi} P \int_{s_{\rm th}}^{\infty} \frac{R_{\rm had}(s) \, ds}{s(s-q^2)}$
- Hadronic uncertainties \leadsto α the least well known EW param. of $\{G_{\mu}, M_Z, \alpha(M_Z^2)\}$!
- ullet We find (HLMNT '11): $\Deltalpha_{
 m had}^{(5)}(M_Z^2)=0.027626\pm0.000138$ i.e. $lpha(M_Z^2)^{-1}=128.944\pm0.019$
- ullet HLMNT-routine for $lpha(q^2)$ & $R_{
 m had}^{
 m data}$ available

Fit of the SM Higgs mass: LEP EWWG



Fit and Fig. thanks to M. Grünewald

$$\hookrightarrow M_H = 91^{+30}_{-23}\,\mathrm{GeV}$$
 [$m_t = (173.3 \pm 1.1)\,\mathrm{GeV}$]

Outlook

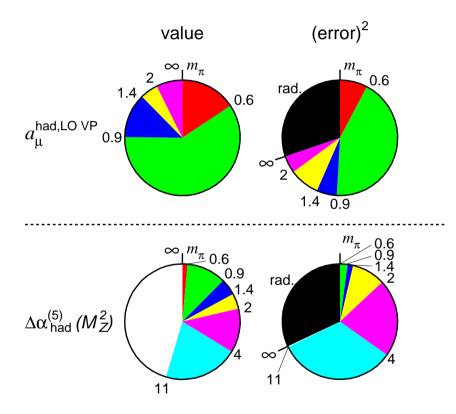
Further improvements

Hadronic VP still the biggest error in a_{μ}^{SM} , soon L-by-L...

Prospects for further squeezing errors:

- More Rad. Ret. in progress at KLOE
- Great opportunity for KLOE-2, BELLE, Super $\tau-c$, in a few years SUPER-Bs, also strong case for DAFNE-HE
- Big improvement envisaged with CMD-3 and SND at VEPP2000
- Higher energies: BES-III at BEPCII in Beijing is on; KEDR at VEPP-4M

Pie diagrams for contr. to a_{μ} and $lpha(M_Z)$ and their errors 2



- ▶ New g-2 experiments at Fermilab and J-PARC.
- → talks by G. Venanzoni, N. Saito
- \blacktriangleright Will a_{μ}^{SM} match the planned accuracy? \leadsto L-by-L may become the limiting factor!