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Introduction

e Why Vacuum Polarisation / running a corrections 7

Precise knowledge of VP / a(q?) needed for:

— Corrections for data used as input for g — 2: ‘undressed’ o}
2
had,LO _ 1 [ 0 : _m
a, "0 = 1 fm% ds oy q(s)K(s), with K(s) =54+ (0.63...1)
— Determination of o, and quark masses from total hadronic cross section Rj.q
at low energies and of resonance parameters.

— Part of higher order corrections in Bhabha scattering important for precise Luminosity

determination.

— a(M?3) a fundamental parameter at the Z scale (the least well known of {G,, Mz, a(M2)}),

needed to test the SM via precision fits/constrain new physics.

— Ingredient in MC generators for many processes.



e Dyson summation of Real part of one-particle irreducible blobs II into the effective, real

running coupling aQED:

Full photon propagator ~ 1 + II + II-I1I + II-II-II + ...

87

w0 = ey — o/ U Aol = Sanle)

e The Real part of the VP, Rell, is obtained from the Imaginary part, which via the Optical

Theorem is directly related to the cross section, Imll ~ o(e"e™ — hadrons):

2 oo 0 0
(5) /.2y _ q Thaq(8) ds _ Ohad ()
Banald’) = Anla P/mz s—q* Thad(5) = 11— T1J?

U requires ‘undressing’, e.g. via -(a/a(s))? ~ iteration needed]

[— o
e Observable cross sections y,,q4 contain the [full photon propagator|?, i.e. |infinite sum|?.

1
111

— To include the subleading Imaginary part, use dressing factor



HLMNT routine; status and comparison

Features of the HLMINT VP code new version based on HLMNT ’11 imminent

— Latest version is VP_HLMNT _v2_0, version 2.0, 15 July 2010

— Simple set of (standard) Fortran routines; completely standalone, no libs needed; all

explanations in comment-headers
— Gives separately real and imaginary part (Aa(s) and R(s))

— Tabulation /interpolation of hadronic part, for both space- and time-like region,

including errors; no input data files or rhad installation needed

— Leptonic part coded analytically; all special function included (partly with custom made

expansions)
— top contribution in the same way

— Flag to include or exclude narrow resonances J /1, ', T(1 — 6 .S)
[but ¢ always included via integral over final state data (37, K K)]



® Typical accuracy ¢ (Aa}(lz)d(S))

Error of VP in the timelike regime at low and higher energies (HLMNT compilation):
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— Below one per-mille (and typically ~ 5-107%), apart from Narrow Resonances

where the bubble summation is not well justified.

Enough in the long term? Need for more work in resonance regions.



® Typical accuracy ¢ (Aoq(lz)d(s))

Error of VP in the timelike regime: old vs. new HLMNT "11 compilation):
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— region 1 < /s < 2 GeV (and higher) improved,

p suffers from tension in 27 data (BaBar included).



e Comparison of Spacelike Aozgd(—s)/oz (smooth a(g* < 0))
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— Differences between parametrisations clearly visible but within error band (of HLMNT)

— Few-parameter formula from Burkhardt+Pietrzyk slightly ‘bumpy’ but still o.k.

— Encourage use of more accurate recent tabulations; Aa(M7)



® Aa(g?) in the time-like: HLMNT compared to Fred Jegerlehner's new routines
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— with new version big differences (with 2003 version) gone

— smaller differences remain and reflect different choices, smoothing etc.



® HLMNT compared to Novosibirsk
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More comparison plots...

HLMNT compared to Fred Jegerlehner’'s new version: Detailed look

Low energies: p and ¢

solid (error band, red): HMNT
dotted (blue): JO9
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HLMNT compared to Fred Jegerlehner’'s new version: Detailed look

Medium energies: continuum and charm

Aa, O (s)/a

4

solid (err. band, red): HMNT
dotted (blue): JO9

Vs (GeV)



HLMNT compared to Fred Jegerlehner’'s new version: Detailed look

Higher energy continuum; bottom
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HLMNT compared to Fred Jegerlehner’'s new version: Detailed look Changes here!

Details of higher Y'(4,5,6.5) [10580, 10860, 11020] / open bottom region
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— HLMNT still to include BaBar's Ry; data; ISR unfolding.. work in progress v

1.4

— expected to smooth and improve region above 11 GeV v



Latest changes New HLMNT °11!

Inclusion of BaBar's bb after ISR deconvolution
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Inclusion of BaBar's bb after ISR deconvolution New HLMNT ’11!

Higher energy continuum; bottom. No smoothing!
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HLMNT "11:

R(s)

New HLMNT °11!
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HLMNT '11: space- and time-like Act™,(s)/cx New HLMNT 11!
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HLMNT compared to CMD-2's
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HLMNT compared to CMD-2's routine: three more zooms
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Narrow Resonances: treatment and pitfalls

Note 1:

— For Aa or g — 2, using NR or BW formulae with the dressed width I',. for a resonance

V is inconsistent and introduces sizeable effects (a few percent).

— Undressing via the smooth spacelike running a(— My ) comes closer numerically but is

not fully correct.

— Use undressing formula
[/ o (M3)]”
1+ 3a/(4m)
where ‘no V' means that the resonance V' is excluded from the running a.

0 _
Fee_

Note 2:
— Close to narrow resonance energies |II| ~ 1 and the summation breaks down

< Need other formulation, e.g. Breit-Wigner resonance propagator interfering with ~:

a(s)\’ 1 3L e My, ’
bk SV R
s 52 s — Mz + il My

o V<5> +




Extras:



Comparison of different compilations

® Timelike a(s) from Fred Jegerlehner's (2003 routine as available from his web-page)

als=E% = a/ (1 — Aayep(s) — Aoz}(lz)d(s) - Aozmp(s))
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Timelike a(s = ¢* > 0) follows resonance structure:
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— Step below just a feature of unfortunate grid.

— Difference below 1 GeV not expected from data.

|[Comparisons with other parametrisations confirm HMNT ]



® HMNT compared to Novosibirsk's parametrisation

Timelike |1 — II(s)|* ~ (a(s)/a)? in p central energy region: A relevant correction!
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— Small but visible differences, as expected from independent compilations.



e What about Aa(M2)? Obsolete/dated!!!

— With the same data compilation of o, ; as for g — 2 HLMNT find:

Aal®) (M2) = 0.02760 + 0.00015 (HLMNT 09 prelim.)
ie. a(MzZ)™! = 128.947 £ 0.020 [HMNT '06: a(MZ)" = 128.937 4 0.030]

Earlier compilations:

Group Aoz}(lz)d(M%) remarks
Burkhardt+Pietrzyk '05| 0.02758 £ 0.00035 data driven
Troconiz+Yndurain '05 | 0.02749 4 0.00012 pQCD
Kihn+Steinhauser '98 | 0.02775 + 0.00017 pQCD

Jegerlehner '08 0.027594 + 0.000219 | data driven/pQCD
(My = 2.5 GeV) 0.027515 £ 0.000149 | Adler fct, pQCD

HMNT 06 0.02768 £ 0.00022 data driven
. 3m d dII(s)
Adler function: D(—s) - stAoz(S) (1277)s P

allows use of pQCD and minimizes dependence on data.




The running QED coupling oz(M%)

. and the Higgs mass

e Vacuum polarisation leads to the ‘running’ of
a from a(¢® = 0) = 1/137.035999084(51)
to aqg® = M%) ~ 1/129

e a(¢’) = a/ (1 = Aauep(¢?) — Aaaa(q?))

e Again use of a dispersion relation:
(5) ag? 00 Ryaq(s)ds
Aayq(q®) = _%Pfsthsh(sdf(q)z)
e Hadronic uncertainties ~»  « the least well
known EW param. of {G,,, Mz , a(M3)}
e We find (HLMNT "11):
Acl® (MZ) = 0.027626 + 0.000138

Le. a(M2)~! = 128.944 & 0.019
e HLMNT-routine for a(q?) & RI¥ available

Fit of the SM Higgs mass: LEP EWWG
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Fit and Fig. thanks to M. Griinewald

— My = 917133 GeV

[m; = (173.3 4+ 1.1) GeV]



Outlook

SM

o soon L-by-L...

» Further improvements  Hadronic VP still the biggest error in a

Pie diagrams for contr. to a, and a(My) and their errors’

Prospects for further squeezing errors: 2
value (error)

e More Rad. Ret. in progress at KLOE o 2 g

1.4

e Great opportunity for KLOE-2, BELLE, edLOVP

Super 7 — ¢, in a few years SUPER-Bs, i

also strong case for DAFNE-HE

e Big improvement envisaged with

CMD-3 and SND at VEPP2000

e Higher energies: BES-IIl at BEPCII in ARy (M2)
Beijing is on; KEDR at VEPP-4M

» New g — 2 experiments at Fermilab and J-PARC.  — talks by G. Venanzoni, N. Saito

» Will aiM match the planned accuracy? ~~ L-by-L may become the limiting factor!



