How Real Is a_{μ}^{had} Accuracy?

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline

1. Hard thoughts

What is worrying?

- Missing states: neutrals; $\pi^+\pi^-n\pi^0, K\bar{K}n\pi$ isospin
- New states from BaBar, double counting
- Radiative corrections (FSR): Charge asymmetry at KLOE $3k\ e^+e^- \to \pi^+\pi^-\gamma$ evts at CMD-2
- Correlations
- Averaging
- Light-by-light term
- Double counting (LO and HO)

Charge asymmetry in $e^+e^- \to \pi^+\pi^-\gamma$ sQED is OK (0.6 < $M_{\pi\pi}^2$ < 0.7 GeV²)

More detail

- Missing states: there are no measurements of: radiative decays of the $\rho'(\omega', \phi') \to \pi^0(\eta) \gamma$, 7π final states or these with more pions, final states with $n\pi + a$ hard photon, final states with more than $2\pi^0$'s
- Isospin relations as such based on Clebsch-Gordon coefficients only have limited applicability dynamics with account of inteerference (examples of $K\bar{K}\pi$ and $K\bar{K}2\pi$)
- New final states studied by BaBar bring new problems: e.g., $2(\pi^+\pi^-\pi^0)$ can be $\omega\pi^+\pi^-\pi^0$ or $\eta\pi^+\pi^-\pi^0$ (something else?), but η decays into $\pi^+\pi^-\pi^0$ in 22.7% only, $\eta \to 2\gamma$ (39.3%) results in $2\gamma\pi^+\pi^-\pi^0$, $\eta \to \pi^+\pi^-\gamma$ (4.6%) results in $\gamma\pi^+\pi^-\pi^+\pi^-\pi^0$, $\eta \to \pi^0\pi^0\pi^0$ (32.6%) results in $\pi^+\pi^-4\pi^0$ (see above)