

Beam merging techniques assisted by curved crystals

Third Year Admission Seminars – 24/10/2024

Ph.D. Candidate: **Davide Annucci** Sapienza Università di Roma – INFN Roma – CERN

Thesis Advisor: P. Valente INFN Supervisor: A. Variola CERN Supervisor: R. Rossi, W. Scandale Ph.D. in Accelerator Physics Cycle XXXVIII

Outline of the Presentation

1) Beam Merging with bent crystals

• Idea and implementation in H8

2) UA9 Experimental setup design and simulations

- Experiment KPI (Key Performance Indicators)
- Merging efficiency after introducing imperfections
- 3) TimePix3 measurements for Channeling detection in SPS H8 NA
 - Differential Data Analysis
 - TimePix3 detector measurements (standalone & with UA9 tracker)

4) Conclusions

1 Beam Merging with bent crystals

24/10/2024

Coherent processes in bent crystals (1/2)

- A particle impinging on a crystal behaves differently depending on its alignement wrt crystal structure
 - Amorphous or Coherent Behaviour
- Particle aligned with the crystal planes
 - Critical Angle $\theta_c = \sqrt{2U/E}$ for Channeling
 - capture inside the tunnel if particle imapcts Cry with $\theta < \theta_c$
- Bent crystal \rightarrow Particle deflection
- If the particle leaves the Channeling condition
 - Dechanneling

Coherent processes in bent crystals (2/2)

- Dechanneling (DCH), Volume Capture (VC) and Rechanneling (RCH)
 - No more CH condition DCH can happen (sometimes followed by RCH)
 - VC conceptually similar to RCH

- Volume Reflection (VR)
 - Charghed particles reflected by the crystal potential barrier
- Is it possible to exploit Coherent Processes to merge beams?

Beam merging Idea

- Two beams incoming from different directions, merged by bent crystal
- A bent crystal act as an «Angular Filter», deflecting particles by Channeling
 - No dramatic emittance increase after merging!
 - Beamlet #1 → AM/VR → wider divergence after crystal
 - Main scheme and (x, x') phase space plots in the ideal case

• How is it possible to implement this merging scheme?

24/10/2024

Page 5

Beamlet $#2 \rightarrow$ Channeling

24/10/2024

Beam merging proposed setups

- Problem: A Two-Converging Beamlines setup does not exist
 - Solution: Bent crystals \rightarrow create two beamlets which will converge at another point
 - Third crystal at the convergence point \rightarrow here the merge will happen!
- CERN SPS H8 extracted Beamline is the UA9 experimental site since decades

2

UA9 Experimental setup design and simulations

24/10/2024

Davide Annucci – Beam merging techniques assisted by curved crystals

Page 7

From the idea to the simulations

- Geant4 Toolkit used to perform the simulation of the UA9 merging setup
 - Channeling implemented by E.Bagli et al (INFN-Fe) since G4 10.05.p01
- Simulations campaign carried on BEFORE decicing the effective UA9 setup
- «Baseline» unperturbed Configuration scheme
 - Reference frame centered on Cry2 \rightarrow Cry1 and Cry3 placed at -8 m and +10 m
 - Bending Angles: $\theta_{b1} = 1 \mu rad$, $\theta_{b2} = 1.8 \mu rad$, $\theta_{b3} = -0.8 \mu rad$ to close the «triangle»

24/10/2024

Davide Annucci – Beam merging techniques assisted by curved crystals

Page 8

Beam Merging Efficiency

- Focus only on the Beamlets #1 and #2 and the Cry3
 - Beam #1 enters Cry3 in AM/VR → Fully passes through Cry3 an go almost straigth
 - Beam #2 enters Cry3 in Channeling → Some particles will be bent, some other will go in AM
- Beamlet #1 and #2 are already in Cry3 Acceptance
 - Same crystal entry face width for all the crystals. Beamlets #1 and #2 have $\sigma'_{\chi} = \theta_c$

24/10/2024

Introducing perturbation

- What happens if there are Bending errors $\delta \theta_b$ on the crystal
 - Small $\delta \theta_b \rightarrow$ The ε_M and N_M will be reduced
 - Big $\delta \theta_b \rightarrow$ Beam #1 and/or #2 could not impact Cry3 anymore
 - Cry3 should be shifted laterally if $\delta \theta_b$ is too big
- How to modify the UA9 setup if bending errors on the crystals are present
- How can the baseline configuration be recovered
 - Bending errors can be compensated by changing the crystals orientation $\delta \theta_r$
- Rotations must NOT be too high
 - otherwise less particles impinging the crystals will be into their Channeling Acceptance
 - The Beamlet #1 or #2 or the Merged one would be less populated for big rotation angles

Introducing perturbation

- Apply Bending errors $\delta \theta_b$ and rotations $\delta \theta_r$ to the crystals
 - Study how merging efficiency (ε_M) and merged beam population (N_M) will be reduced
 - $\theta_{rms} \rightarrow \text{Quadrature sum of all the source of angular errors}$

 $N_M/N_M^b \rightarrow$ Ratio of the merged beam population when applying the angular perturbations with respect to the Baseline case (no perturbations applied)

 $\varepsilon_M / \varepsilon_M^b \rightarrow$ Same but for the merging efficiency

 ε_M and N_M are still acceptable (30% losses wrt Baseline) only if $\theta_{rms} < 15 \div 25 \ \mu rad$

24/10/2024

Page 11

Recombined beam in the phase space

3

TimePix3 measurements for Channeling detection in SPS H8 NA

24/10/2024

The TimePix3 in a nutshell and its application

• Small and portable detector

- 14x14 mm^2 sensitive area, 256x256 pixels, 55 μm pixel pitch, 100 μm thick Si sensor
- ToA, ToT, Itot functionalities \rightarrow Beam X/Y Profiles, Time distribution and energy deposit
- Acquisition in «Single Frame» or «Cumulative» mode (stacking more frames per single DAQ)
- TimePix3 can be used as online beam monitor
- Useful to perform the Angular Scan
 - Cumulative mode \rightarrow See how the beam spot size and morphology change over time
 - Real time CH/VR peak emerging from the Background when rotating the crystal (June 2024)

TimePix3 angular scan – Compare with Tracker

- Angular Scan performed using the TimePix3 and the UA9 Tracker Standalone
 - Large impact angle acceptance bigger than $\theta_c \rightarrow$ Twisted crystal
 - At different time, different parts of the crystal are in Channeling

Bending Angle measurement with TimePix3

• Readout in «Frame» mode \rightarrow Beam X/Y distribution

SAPIENZA Università di Rom

- Mandatory to record almost 10 Spills, otherwise the SNR is too • low and data cannot be analyzed (more spills is better, i.e. 100)
- The two Runs are cleaned, normalized, and then subtracted.
- Crystal bending angle: 170 μrad from previous UA9 measurements

100 Spills best CH and VR Runs

- These two Runs are the best in CH and VR orientation
 - TimePix3 can be used to measure precisely CH and VR angle
 - In these plot the CH/VR-AM subtraction is applied
 - VR Angle measurement: $\theta_{VR} = (52.7 \pm 3.2) \mu rad$

24/10/2024

Page 17

Crystal Torsion measurement with TimePix3

- SPS-Type Crystal with known torsion defect
 - measured with UA9 Tracker: $T \sim 4 \mu rad$ (September 2023 May/June 2024)
- Beam impacts on the crystal at different heights
 - CH particles are deflected at different angles despite Cry Channeling angle is the same!
 - This means there is a Twist effect!
 - Key goal: Obtain bending angle slice-by-slice to compute the torsion

24/10/2024

4

Conclusions

Now this is not the End It is not even the Beginning of the End But it is, perhaps, the End of the Beginning - W.Churchill 10 Nov 1942

24/10/2024

Conclusions

- The beam recombination scheme with crystals can be implemented in NA H8
 - From simulations \rightarrow Merging efficiency is 85% in the unperturbed case
 - Maximum tolerance for bending errors and crystal rotation shoud not exceed $15 \div 25 \ \mu rad$
- TimePix3 detector can be used «in parallel» with the Tracker or either standalone
 - Excellent results while performing the Angular Scan
 - Easily allows to identify AM, VR, CH and Transition regions
 - Differential Analysis \rightarrow Powerful tool to measure crystal CH/VR angle
 - All the results obtained are compatible with the one obtained by the UA9 Tracker

• Plans for the future

• Implement in H8 the Cry2/Cry3 Chicane (Oct 2024) and the full setup (Early 2025)

Thank You for your attention

Author e-mail: davide.annucci@uniroma1.it

Many thanks to my Ph.D. Supervisors for their precious advices, passion and dedication

Many thanks to GC,LS (and DDR former) for the smooth administrative operation of our Ph.D.

24/10/2024

Backup Slides

Single-crystal KPI

- Determine Single-crystal Channeling Efficiency
 - Beam $\sigma'_x = 40 \ \mu rad$; crystal $\theta_c = 15.8 \ \mu rad$.
 - Only 30.7% of the beam in the CH Acceptance
 - Deflection efficiency for Cry1,2,3 is in range $\sim 60 \div 70\%$
- Effect of Cry Rotation on ε_{CH}
 - Even less particles in the Acceptance
 - i.e. rotatyng Cry by 75 μrad only 5% of particles in Acceptance
- Effect of Cry Bending on ε_{CH}
 - Sligthly increased Dechanneling if curvature radius get smaller

24/10/2024

Beam

Beam Merging scheme

24/10/2024

Beams seen by the Tracker P6 (+19.1 m)

- What does the most downstream Tracker Station observe (X-Y 2d-Plot)
 - H8 Circulating Beam
 - Merged Beam (Ch1-AM/VR3 + Ch2-Ch3)
 - AM componet of B2 after Cry3 (Ch2-AM3)

- Geant4 Setup
 - Tracker Stations $42 \times 42 \ mm^2$
 - This constrain bending angles

24/10/2024

Page 25

Phase Space plot at P6 (+19.1 m)

24/10/2024

Page 26

Phase Space plot at P6 (+19.1 m)

24/10/2024

Page 27

TimePix3 Differential Data Analysis

- Necessary Runs to perform the Analysis
 - DAQ in «Frame» mode \rightarrow One Run with Crystal in AM and one in CH or VR orientation
 - Clean (eliminate frames with spikes) & normalize the two Runs separately
 - Subtract the 2d cleaned beam distributions
 - Obtain the Y profile \rightarrow Fit the CH or VR peak and the Emptying Region \rightarrow Compute CH/VR Angle

24/10/2024

Transition Regions

• One Run (-60) is pure VR, the other three Runs (30, 40, 50) are at CH/VR Transition

Very effective to check the crystal alignment in real time if the Tracker does not work

24/10/2024