Betatron radiation

Candidate: Daniele Francescone Advisor: Prof.Enrica Chiadroni CoAdvisor: Dott.Giancarlo Gatti PhD in accelerator physics XXVII cycle University of Rome la Sapienza, Italy CLPU,Salamanca, Spain

Outline

- X ray sources
- Plasma accelerator
- Xrays from plasma (Betatron Radiation)
- Electron motion (wiggler/undulator analogy)
- Radiation properties
- Single electron
- Electron distribution
- 3d theoretical model
- Conference and summer school
- Perspectives

My work

Theory

Context

X ray sources

Emission stimulation

Bending magnet: intensity / ~ 1 continuous spectrum

Wiggler: intensity *I* ~ *N* continuous spectrum

Undulator: intensity $I \sim N^2$ discrete lines in energy

Free Electron Laser

Synchrotron

Plasma accelerators

RF Cavity

I m => 100 MeV Gain Electric field < 100 MV/m

V. Malka et al., Science 298, 1596 (2002)

Plasma accelerator parameters

LWFA/PWFA

$$n_{p} = 10^{17} cm^{-3}$$

$$\omega_{p} = 2 \times 10^{13} Hz$$

$$E_{0} = 30 \frac{GV}{m}$$

$$\lambda_{p} = 100 \ \mu m \ (300 \ fs)$$

$$\sigma_{zD} \approx 25 \ \mu m \ (75 \ fs)$$

$$\sigma_{xD} \approx 2 \ \mu m$$

Plasma frequency

$$E_{max}\left[\frac{V}{m}\right] = \frac{m_e c \omega_p}{e}$$

$$\omega_p = \sqrt{e^2 n_e/m_e\epsilon_0}$$

Refs.

(Left Fig.) Curcio, A., et al. "First measurements of betatron radiation at FLAME laser facility." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 402 (2017): 388-392

Wiggler / Undulator

Refs.

Corde, Sébastien, et al. "Femtosecond x rays from laser-plasma accelerators." Reviews of Modern Physics 85.1 (2013): 1.

Betatron radiation

Equation of motion (1D)

$$\begin{aligned} x &= rsin(k_{\beta}ct) \\ z &= z_0 + \beta_z \left(1 - \frac{r^2 k_{\beta}^2}{4\beta_z^2}\right) ct - \frac{r^2 k_{\beta}^2}{8\beta_z^2} cos(2k_{\beta}ct) \end{aligned}$$

Betatron strength parameter

$$K_{\beta} = \gamma r k_{\beta}$$

Energy radiated

$$\frac{\mathrm{d}^2 I}{\mathrm{d}\omega \,\mathrm{d}\Omega} = \frac{\mathrm{e}^2 \omega^2}{4\pi^2 c} \left| \int_{-T/2}^{T/2} \boldsymbol{n} \times (\boldsymbol{n} \times \boldsymbol{\beta}) \, e^{i\omega\left(t - \frac{\boldsymbol{n} \cdot \boldsymbol{r}}{c}\right)} \,\mathrm{d}t \right|^2$$

$$K_{\beta} = \gamma r k_{\beta}$$

Gaussian distribution of radius

$$K_{\beta}(t) = \gamma(t) \mathbf{r}(t) k_{\beta}(t)$$

Calculation of theFlux

10¹⁷

Ref.

S. Kneip et al. "X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator", APPLIED PHYSICS LETTERS Refs.

F. Stellato et al. "Plasma-Generated X-ray Pulses: Betatron Radiation Opportunities at EuPRAXIA@SPARC_LAB" Condensed matter

Theoretical development of 3D model of electron motion

More accurate trajectory

Conference and school

- September 2022- European Network for Novel Accelerators (EuroNNac) conference Elba island (poster session)
- September 2023 European Advanced Accelerator Concepts Workshop (poster session)
- May 2023 -14 International Particle Accelerator Conference (IPAC) (poster session)
- February 2023 Winter school at Bad Honnef Physics Schools (Germany) on Plasma Acceleration
- July 2023 Summer school at Erice (Italy): Internation School of Particle Accelerators

IROPEAN NETWORK FOR NOVEL ACCELERAT

Conclusion

- I have studied the theory behind betatron radiation, starting from the relativistic motion of a single electron within what is called an ion channel
- I have explored the connection between the motion of a single electron and its radiation.
- I tried to develop a more realistic computational model that takes into account the distribution of electrons and the fact that electrons are accelerated discretizing the ion chanell
- I started a theoretical model of more accurate trajectory.

Perspectives

Measurement of the bunch length starting from the analysis of the incoherent radiation fluctuations

Spectrometer measurment

Data analysis

Thanks for the attention

Parameter	APS	ALS	LCLS	Betatron	Compton
Pulse duration	20–100 ps	<1 ps	10-80 fs	30-60 fs	30-60 fs
Repetition rate	6.5 MHz	kHz	120 Hz	1 Hz	1 Hz
Energy range	0.2–40 keV	0.25–9 keV	0.5–24 keV	1-80 keV	0.1-2 MeV
Bandwidth	2-100%	100%	0.1%	100%	50%
Tunability	Variable undulator gap	Limited	e-beam energy	e-beam energy	e-beam energy
Photons/pulse	10 ⁸	107	1013	108	107
Reproducibility	Excellent	Excellent	Limited (SASE)	Poor	Poor

Parameter	Betatron	Compton	
Repetition rate	>30 Hz	>30 Hz	
Energy range	1-150 keV	1-10 MeV	
Bandwidth	100%	<1%	
Photons/second	10 ⁸	1013	
Jitter	1% rms	1% rms	