

X-ray facility in the 40-110 kV range for medical physics and dosimetry

<u>**R. Bedogni**</u>, A. Calamida, L. Russo, A.I. Castro-Campoy, M.A. Caballero-Pacheco, D. Dashdondog, C. Cantone

LEMRAP Laboratory for Environmental and Medical RAdiation Physics

LEMRAP Laboratory for Environmental and Medical RAdiation Physics

Alessandro Calamida

Luigi Russo

Ivan Castro

Miguel Angel Caballero

Dolzodmaa Dashdondog

 \circ The international normative

 \circ The facility

 \circ The monitoring equipment

 \circ The measurement capabilities

The international normative

TC 85 Nuclear Energy SC2 Radiological Protection WG2 Reference radiation fields

ISO 4037

X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy

- ISO 4037-1:2019 Radiation characteristics and production methods
- ISO 4037-2:2019 Dosimetry for radiation protection over the energy ranges from 8 keV to 1,3 MeV and 4 MeV to 9 MeV;
- ISO 4037-3:2019 Calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence;
- ISO 4037-4:2019 Calibration of area and personal dosemeters in low energy X reference radiation fields.

The facility

Conceptual scheme of a reference X-ray facility

- F focus
- K₁, K₂, K₃ collimators

X-rays @ LNF

25-10-2023

- F₁ additional filtration
- F_2 filter wheel
- M Monitor chamber
- D detector
- B calibration bench

The facility

GENERAL ELECTRIC STENOSCOP 9000

Caratteristiche

• W anode

X-rays @ LNF

25-10-2023

- Constant potential
- Filtration 1,5 mm Al + added
- Anode 1,8x1,8 / 0,5x0,5 mm²
- 40 to 110 kV
- 0.1 to 3 mA

The facility (Ed. 17 retro)

- Bunker 2 mm Pb 2 x 2 x 2 m³
- Sliding door
- Interlocked (RP approved)
- Cables in/out

The facility (Ed. 17 retro)

Filter system

The facility

Imaging capability

filters

From T Napolitano

The measurement capabilities

Achieving "reference" photon fields

If

- $\checkmark\,$ kV well-known and constant
- \checkmark Application of standard filters (ISO 4037)
- ✓ Tube output:
 - Continuously monitored with a transmission free-air ionisation chamber
 - $\circ~$ Measured at reference distance with a calibrated ionisation chamber

Then

The energy distribution of the photon field is known The field intensity is known

The measurement capabilities

Reference ionisation chamber

Concentrical spherical electrodes

$$R_{int} = 1 \text{ cm}$$

 $R_{ext} = 3 \text{ cm}$

 $\mathbf{D} = \mathbf{F}_{m} \times \mathbf{M}_{m}$

The measurement capabilities

X-rays @ LNF

25-10-2023

The measurement capabilities

X-rays @ LNF

25-10-2023

Series "Narrow spectrum" (N)

The measurement capabilities

Series "Narrow spectrum" (N)

				dK/dt	dΦ/dt
Beam			<e></e>	(mGy/h)	$\mathrm{cm}^{-2}~\mathrm{s}^{-1}$
code	kV	filtration	(keV)	1 mA, 40 cm	1 mA, 40 cm
N40	40	4 Al + 0.21 Cu	33,3	18	7×10^{6}
N60	60	4 Al + 0.6 Cu	47,9	33	3×10^{7}
N80	80	4 Al + 2 Cu	65,0	18	2×10^{7}
N100	100	4 Al + 5 Cu	83,1	9	8×10^{6}

By operating on distance (20 cm to 60 cm) and current (0.1 to 3 mA) the field intensity can be varied from $\div 20$ to $\times 200$

The measurement capabilities

Series "Wide spectrum" (W)

				dK/dt	dΦ/dt
Beam			<e></e>	(mGy/h)	$\mathrm{cm}^{-2}~\mathrm{s}^{-1}$
code	kV	filtration	(keV)	1 mA, 40 cm	1 mA, 40 cm
W40	40	4 Al	29.8	160	6×10^{7}
W60	60	4 Al + 0.3 Cu	44.9	94	9×10^{7}
W80	80	4 Al + 0.5 Cu	56.6	175	2×10^{8}
W110	110	4 Al + 2 Cu	78.8	131	1×10^{8}

By operating on distance (20 cm to 60 cm) and current (0.1 to 3 mA) the field intensity can be varied from $\div 20$ to $\times 200$

The measurement capabilities

Series "High-kerma rate" (H)

				dK/dt	dΦ/dt
Beam				(mGy/h)	$\mathrm{cm}^{\text{-}2}~\mathrm{s}^{\text{-}1}$
code	kV	filtration	<e></e>	1 mA, 40 cm	1 mA, 40 cm
H40	40	1 Al	25.7	960	4×10^{8}
H60	60	3.9 Al	37.4	460	4×10^{8}
H80	80	$7.2\mathrm{Al}$	49	560	5×10^{8}
H100	100	3.9 Al + 0.15 Cu	57.5	900	8×10^{8}

By operating on distance (20 cm to 60 cm) and current (0.1 to 3 mA) the field intensity can be varied from $\div 20$ to $\times 200$

Testing potentialities

- New X-ray detectors
 - \checkmark Response in dose in air
 - \checkmark Reponse in Photon Fluence
- Measurement complex for radiodiagnostics pulse duration, dose in air, kV, SEV

Testing potentialities

• Dose-meters for radiation protection

Testing potentialities

UCD (innovative dosimeter for FLASH Radiotherapy) INFN patent

- Collaboration in progress with PEROV (M. Testa)
- Testing TL chips for private company
- $\circ~$ Determining X-ray parasitic sensitivity of neutron sensors $\circ~$ CSN 1 \smallsetminus CMS \smallsetminus BRIL