

High Energy Neutrinos from Blazars Hadronic processes at work in 5BZB J0630-2406

Sara Buson

A. Azzollini, M. Boughelilba, A. Bremer, M. Lincetto, S. Marchesi, L. Pfeiffer, J. Zaballa, D. Prokhorov, on behalf of the Fermi-LAT collaboration

MessMapp Research

1. Neutrino observational strategy (using the least number of assumptions as possible)

2. Theoretical angle (SED modeling: AM³)

3. Multi-wavelength (photon) observations strategy, including time-evolution information and #1/#2 (when possible)

Blazar / neutrino correlation

THE ASTROPHYSICAL JOURNAL LETTERS, 933:L43 (9pp), 2022 July 10 © 2022. The Author(s). Published by the American Astronomical Society. OPENACCESS https://doi.org/10.3847/2041-8213/ac7d5b

Beginning a Journey Across the Universe: The Discovery of Extragalactic Neutrino Factories

Sara Buson¹⁽⁰⁾, Andrea Tramacere²⁽⁰⁾, Leonard Pfeiffer¹⁽⁰⁾, Lenz Oswald¹⁽⁰⁾, Raniere de Menezes¹⁽⁰⁾, Alessandra Azzollini¹⁽⁰⁾, and Marco Ajello³⁽⁰⁾

¹ Lehrstuhl für Astronomie, Universität Würzburg, Emil-Fischer-St. 31, Würzburg, D-97074, Germany; sara.buson@uni-wuerzburg.com ² Department of Astronomy, University of Geneva, Ch. d'Ècogia 16, Versoix, 1290, Switzerland; andrea.tramacere@unige.ch ³ Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978, USA *Received 2022 May 13; revised 2022 June 20; accepted 2022 June 28; published 2022 July 14*

Abstract

Neutrinos are the most elusive particles in the universe, capable of traveling nearly unimpeded across it. Despite the vast amount of data collected, a long-standing and unsolved issue is still the association of high-energy neutrinos with the astrophysical sources that originate them. Among the candidate sources of neutrinos, there are blazars, a class of extragalactic sources powered by supermassive black holes that feed highly relativistic jets, pointed toward Earth. Previous studies appear controversial, with several efforts claiming a tentative link between high-energy neutrino events and individual blazars, and others putting into question such relation. In this work, we show that blazars are unambiguously associated with high-energy astrophysical neutrinos at an unprecedented level of confidence, i.e., a chance probability of 6×10^{-7} . Our statistical analysis provides the observational evidence that blazars are astrophysical neutrino factories and hence, extragalactic cosmic-ray accelerators.

Unified Astronomy Thesaurus concepts: Neutrino astronomy (1100); Neutrino telescopes (1105); Blazars (164); Supermassive black holes (1663); Relativistic jets (1390); Cosmic ray astronomy (324)

IceCube Neutrino (p-value) sky-map

Informs about the level of anisotropy in the event spatial distribution

The smallest the local p-value, the highest the discrepancy from background expectations For convenience, we define: L-value = $-\log(p-value_{Loc})$

IceCube skymaps: sensitive to comic sources

Hotspots consistent with NGC 1068 and TXS 0506+056

IceCube skymaps: sensitive to comic sources

Skymap: Cross-correlation analysis

Northern and southern hemispheres treated separately

Sky-map : 10⁷ pixels (sky locations)

—> Focus on the clusters (spots) with strongest deviation from background expectations — to limit trials

7

Skymap: Cross-correlation analysis

Summary of findings

Perform positional cross-correlation analysis, between blazar sample and neutrino spot sample.

Combining the (independent) north and south analysis, the global post-trial p-value for the chance correlation is 2.59×10^{-7} .

Sky region	Dataset (energies)	5BZCat	Hotspots	Matches	Pre-trial p-value	Post-trial p-value
North	9 yr data	2130	66	42	$5.12 \times 10^{-4} (3.28\sigma)$	$6.79 \times 10^{-3} (2.47\sigma)$
$(-3^{\circ} \le \delta \le 81^{\circ})$	$(\sim {\rm TeV}/{\lesssim} 0.1 {\rm ~PeV})$					
South	7 yr data	1177	19	10	$3 \times 10^{-7} \ (4.99\sigma)$	$2 \times 10^{-6} \ (4.5\sigma)$
$\underbrace{(-85^{\circ} < \delta < -5^{\circ})}$	$(\gtrsim 0.1 { m ~PeV})$					
					$p_{ m pre}^{ m global}$	$p_{ m post}^{ m global}$
North $+$ South		_	_	_	$3.62 \times 10^{-9} \ (5.78\sigma)$	$2.59 \times 10^{-7} (5.02\sigma)$

Buson+ 2022 Buson+ 2023

also confirmed by independent studies, e.g. Bellenghi+, when using the same IceCube skymap

Candidate PeVatron Blazar sample

Southern hemisphere candidate associations

IceCube hotspots				Blazar associations		
	$lpha_{hs}[^\circ]$	$\delta_{hs}[^{\circ}]$	L	5BZCat	z	Separation[°]
IC J2243-0540	340.75	-5.68	4.012	5BZB J2243-0609	0.30^{c}	0.47
IC J0359-0746	59.85	-7.78	5.565	5BZQ J0357 - 0751	1.05	0.42
IC J0256-2146	44.12	-21.78	4.873	5BZQ J0256 - 2137	1.47	0.17
IC J2037-2216	309.38	-22.27	4.664	5BZQ J2036 - 2146	2.299	0.51
IC J0630-2353	97.56	-23.89	4.420	5BZB J0630 $-2406^{a,b}$	$> 1.238^{d}$	0.28
IC J0359-2551	59.94	-25.86	4.356	5BZB J0359 -2615^{a}	1.47^e	0.40
IC J0145-3154	26.28	-31.91	4.937	$5BZU J0143 - 3200^{a}$	0.375	0.42
IC J2001-3314	300.41	-33.24	4.905	5BZQ J2003 - 3251	3.773	0.53
IC J2304-3614	346.03	-36.24	4.025	5BZQ J2304-3625	0.962	0.24
IC J1818-6315	274.50	-63.26	4.030	5BZU J1819 - 6345	0.063	0.53
IC J2024-1524	306.12	-15.40	4.454	_	_	_
IC J1256-1739	194.06	-17.66	4.407	_	_	_
IC J1329-1817	202.32	-18.29	4.040	_	_	_
IC J1241-2314	190.37	-23.24	4.288	_	_	_
IC J0538-2934	84.73	-29.57	4.994	_	_	_
IC J2006-3352	301.55	-33.87	4.698	_	_	_
IC J1140-3424	175.17	-34.41	4.082	_	_	_
IC J1138-3915 ^f	174.64	-39.26	5.885	_	_	_
IC J0628-4616	97.23	-46.28	4.987	_	_	_

Candidate PeVatron Blazar sample

Southern hemisphere candidate associations

IceCube hotspots				Blazar associations		
	$lpha_{hs}[^\circ]$	$\delta_{hs}[^{\circ}]$	L	5BZCat	z	Separation[°]
IC J2243-0540	340.75	-5.68	4.012	5BZB J2243-0609	0.30^{c}	0.47
IC J0359-0746	59.85	-7.78	5.565	5BZQ J0357 - 0751	1.05	0.42
IC J0256-2146	44.12	-21.78	4.873	5BZQ J0256 - 2137	1.47	0.17
IC J2037-2216	309.38	-22.27	4.664	5BZQ J2036-2146	2.299	0.51
IC J0630-2353	97.56	-23.89	4.420	5BZB J0630 $-2406^{a,b}$	$> 1.238^{d}$	0.28
IC J0359-2551	59.94	-25.86	4.356	5BZB J0359-2615 ^a	1.47^{e}	0.40
IC J0145-3154	26.28	-31.91	4.937	$5BZU J0143 - 3200^{a}$	0.375	0.42
IC J2001-3314	300.41	-33.24	4.905	5BZQ J2003 - 3251	3.773	0.53
IC J2304-3614	346.03	-36.24	4.025	5BZQ J2304-3625	0.962	0.24

Focus on one object which has broadband MWL data of good quality

5BZB J0630-2406 — May it be a plausible neutrino candidate?

IC J0628-4616 97.23 -46.28 4.987 -

Physical properties 5BZB J0630-2406

Classification

- Source at redshift $z \ge 1.23$
- Historically classified as a BL Lac object : lack of emission lines, high synchrotron peak
- Hints of a luminous accretion disk with broad emission lines swapped by the jet synchrotron (Ghisellini+12).
 - High-power, radiatively efficient blazar, i.e. a **blue flat spectrum radio quasars,** broad lines and a standard accretion disk (a.k.a. **masquerading BL Lacs**)
- Properties similar to TXS 0506+056 and PKS 1424+240

IceCube skymap

Ghisellini+ 2011, 2012; Padovani+ 2012

Multi-Epoch Modeling

Good continuous coverage in optical and gamma rays Four X-ray observations Strong, correlated variability in all (available) bands

Start from modelling the SED for T2:

- Serendipitous simultaneous data in the X-ray band:
 - Swift / XMM /NuSTAR
- Complementary optical and Fermi-LAT

Multi-Epoch modeling

-	unit	T1 (1)	T1 (2)	T1 (3)	T2
$R'_{\rm blob}$	cm	$2.5 imes 10^{16}$	$1.8 imes 10^{16}$	$2.7 imes 10^{16}$	2.6×10^{16}
B'	G	1.1×10^{0}	7.4×10^{-1}	1.7×10^{0}	1.1×10^{0}
δ	-	49	49	49	49
$ au_{ m var}$	days	0.44	0.31	0.48	0.46
$\gamma_{ m e,min}'$	-	8.2×10^{1}	1.4×10^2	9.0×10^{1}	8.2×10^{1}
$\gamma'_{\rm e,brk}$	-	9.9×10^{2}	3.0×10^{3}	4.0×10^{2}	3.1×10^{3}
$\gamma_{ m e,max}'$	-	5.1×10^4	9.7×10^{4}	4.9×10^{4}	3.7×10^4
p_{e}^{1}	-	1.85	1.5	1.54	1.85
p_{e}^{2}	-	2.14	2.71	2.09	2.07
$u_{\rm e}^{\prime}/u_{\rm b}^{\prime}$	-	8.2×10^{-3}	6.4×10^{-2}	2.2×10^{-3}	8.0×10^{-3}
$L_{ m e}'$	$erg \cdot s^{-1}$	1.3×10^{41}	2.0×10^{41}	1.4×10^{41}	1.5×10^{41}
$\gamma_{ m p,min}'$	-	1	1	1	1
$\gamma'_{\rm p,max}$	-	1.4×10^{7}	2.7×10^{7}	1.5×10^{7}	1.5×10^{7}
$p_{\rm p}$	-	1.75	1.51	1.53	1.87
$u_{\rm p}^{\prime}/u_{\rm b}^{\prime}$	-	2.1×10^{1}	7.7×10^{1}	5.4×10^{0}	2.0×10^{1}
$L'_{\rm p}$	$erg \cdot s^{-1}$	$1.8 imes 10^{44}$	$1.6 imes 10^{44}$	$1.3 imes 10^{44}$	1.8×10^{44}
$L_{ m disk}$	$erg \cdot s^{-1}$	$2.8 imes 10^{45}$	$2.8 imes 10^{45}$	3.4×10^{45}	1.7×10^{45}
М	$M_{\odot} \cdot { m year}^{-1}$	4.9×10^{-1}	5.0×10^{-1}	$6.0 imes 10^{-1}$	2.9×10^{-1}
η	-	2.2×10^{-3}	2.2×10^{-3}	2.7×10^{-3}	1.3×10^{-3}
$M_{ m BH}$	M_{\odot}	1.0×10^{9}	1.0×10^{9}	1.0×10^{9}	1.0×10^{9}
$R_{\rm diss}/R_{\rm BLR}$	-	2.1	2.0	1.8	2.1
T _{torus}	K	3.8×10^2	1.3×10^2	1.9×10^{2}	3.8×10^{2}

Increase in neutrino emission relates to change in X-rays X-rays better proxy for neutrinos than gamma γ rays

Neutrino predictions

Neutrino predicted from theoretical modeling

Epoch	Period	IC	$N_{\mu, \mathrm{events}}$
T1 (1)	August 2008 - August 2009	40 / 59	$0.09^{+1.91}_{-0.09}$
T1 (2)	January 2010 - January 2011	59 / 79	$0.21^{+1.79}_{-0.21}$
T1 (3)	June 2010 - June 2011	79 / 86	$0.84^{+3.16}_{-0.84}$
T2	April 2014 - April 2015	86	$0.11^{+1.89}_{-0.11}$

preliminary

 $N(\nu_{\mu})$ observed

 $N(\nu_{\mu})$ observed

 $N(\nu_{\mu})$ predicted

MessMapp Research Group

Collaborators: M. Ajello, A. Coleiro, G. Illuminati, S. Marchesi, M. Santander, A. Tramacere F. Vazza

Current active members Full list of contributors : https://messmapp.github.io/group.html

Summary

- A subsample of candidate PeVatron blazars proposed as associated with IceCube neutrino hotspots; post-trial probability of ~2.59 x 10⁻⁷.
- Theoretical modelling of MWL SED confirms plausible neutrino emitter: Candidate association, 5BZB J0630-2406:
 - X-ray flare happening during the 7yr IceCube observation
 - SED modeling predicts variable neutrino emission
 - Consistent with an increase in the observed neutrino event rate
 - Overall properties similar to TXS 0506+056; contributing <1% to the diffuse neutrino flux
- '*Tip of the iceberg*' : other individual sources may be already detectable in the 15-yr (proprietary) IceCube datasets
- Analysis and results fully reproducible:
 - Datasets available via e.g. Zenodo.
 - Software hosted e.g. in GitHub. First public release: AM³.

Back up

Leptonic solutions

Leptonic / Lepton-hadronic modeling

- Simulation of the acceleration and the cooling of electrons and / or protons inside of a spherical region (blob) with the AM³ code (Gao+ 2017, Klinger+ 2023).
- Spherical region moving at relativistic speed inside the jet surrounded by an accretion disk and a dust torus emitted as black bodies.
- Emission from the accretion disk is reprocessed by the BLR.
- Parameters are fitted to reproduce the SED by minimising the $\chi^2_{\rm d.o.f}$ between the simulated and the observed data.

Neutrino point-source Searches

IceCube Neutrino (p-value) sky-map

Informs about the level of anisotropy in the event spatial distribution

The smallest the local p-value, the highest the discrepancy from background expectations For convenience, we define: L-value = $-\log(p-value_{Loc})$

IceCube coll. results

- **No excess** is found at statistically significant level in the hot-spot all-sky population analysis
- Caveat:
 - Many trials, more than 10⁷ sky locations tested
 - Need very strong sources in order to detect them with this approach

However, IceCube skymaps are sensitive to comic sources

High-energy neutrino event topologies

