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ULDM: where it stands

The CDM paradigm has some
well-known issues, for example
(Robles et al. 2018):

▶ cusp/core problem

▶ Missing satellite problem

▶ Lower-than-expected central
densities

These problems might be
alleviated invoking baryonic
physics, e.g. gravitational stirring
by SNe. But in dwarf spheroidal
galaxies?

▶ Need to invoke another
mechanism → ULDM



ULDM: which one?

We focus on a scalar field with mass m ∼ 10−22eV, whose de
Broglie wavelength acts as a quantum pressure that suppresses
power on very small scales. In formulae:
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PTAs constraints on ULDM



PTAs: identikit!

▶ PTA experiments observe collections of pulsars and search for
”special” signatures in their pulse time of arrivals (TOAs).

▶ They observe milli-second pulsars (MSPs), the most precise
celestial clocks.

▶ Challenge: relate the observed time of arrivals (TOAs) at the
observatory to the time of emission at the pulsar. (Edwards et
al. 2006)

Convenient to single out three
main contributions:

tpsre = tobsa −∆⊙ −∆IS −∆B



How to look for a signal in PTAs

The main observable in a PTA experiment is the timing residuals,
δ⃗t, which measure the discrepancy between the observed times of
arrival (TOAs) and the ones predicted by the pulsar timing model.
In general, each process will affect the timing residuals in a
peculiar way. Qualitatively,

δ⃗t = Mϵ⃗+
−−−→
W .N.+

−−→
R.N.+ boh?... (1)

In order to look for a signal in PTAs, we should model how it
affects the timing residuals!



ULDM: Classical Wave
In the following, we will think of ULDM as a free scalar field. Due
to the huge occupation number (Khmelnitsky and Rubakov, 2013),
the ULDM field can be thought as a collection of classical waves

ϕ(x, t) = A(x)cos(mt + α(x))

Skipping a little bit of details (Khmelnitsky and Rubakov, 2013), it
turns out that(adapted from Porayko, 2018):

∆t(t) = π
GρDM

2m3
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c

)
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▶ correlated limit

▶ pulsar-correlated limit

▶ uncorrelated limit



ULDM: Gravitational interaction

EPTA paper VI, CS+ (2023) PRL



ULDM: Coupling to matter

▶ The previous results are based on the gravitational interaction
of ULDM with matter.

▶ However, it might also happen that ULDM features some
interaction with the Standard Model particles. Why? Why
not? What will we be able to say in this case?

Qualitative understanding of the main point of this part: the
coupling to matter modifies the moment of inertia of the pulsar.
By conservation of angular momentum, this produces a change in
the spin frequency of the pulsar.



Conformally coupled ULDM

We will consider here universal interactions of ULDM with the SM.
To characterize the coupling we define a field-dependent function
A(ϕ) and assume ULDM couples universally with the SM through
a Jordan-Fiertz metric g̃µν = A2 (ϕ) gµν .

S = M2
P

∫
d4x

√
−g

[
R

2
− gµν∂µϕ∂νϕ+m2ϕ2

]
+ Sm[ψm, g̃µν ]

▶ FJBD theory: A(ϕ) = eαϕ ∼ 1 + αϕ

▶ DEF theory: A(ϕ) = eβϕ
2/2 ∼ 1 + 1

2βϕ
2



Conformal ULDM: sensitivity

With the help of the code presented in (A.Kuntz, E.Barausse
2024), we compute the angular momentum sensitivity, defined as:

sI = − 1
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where α(ϕ) = A′(ϕ)/A(ϕ), N is the pulsar’s baryon number and J
is the Einstein-frame angular momentum.



Conformal ULDM

In order to look for a signal in PTAs, we should model how it
affects the timing residuals.

FJBD: ∆t(t) =
Ψ

m
sI ϕ̂(x) sin(mt + θ(x)) Ψ = 2α

√
ρ

MPm

DEF: ∆t(t) =
Ψ

2m
βsI ϕ̂
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ρ

M2
Pm

2

▶ correlated limit

▶ pulsar-correlated limit

▶ uncorrelated limit



Conformal bounds vs ULDM mass

FJBD
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Bonus: Other ways to study ULDM

In the same way, one can also
study ULDM couplings to the
SM (Kaplan+ 2022).
The philosophy is the same:

▶ Define the Lagrangian

▶ Compute the induced timing
residuals

L ⊃ ϕ

Mpl

 dγ
4e2

FµνF
µν −

∑
f=e,µ

dfmf f̄ f





A few concluding remarks

▶ PTAs are wonderful laboratories to test signatures in signals
coming from pulsars;

▶ It is possible to constrain ULDM density below the predicted
abundance;

▶ If ULDM is non-minimally coupled to the SM, PTA searches
can outcompete previous bounds (e.g. Cassini GR bounds or
spontaneous scalarization) by several orders of magnitude in
the relevant mass range;

▶ It is in general possible to set competitive constraints on
ULDM couplings to the SM.



Final Considerations



APPENDIX



ULDM: some formulae

This behaviour can be easily seen
by solving the relevant set of
equations, namely the
Schrödinger-Poisson system:

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ +mVψ

∇2V = 4πG (ρ− ρ̄)

Solving this numerically, we have
a soliton-like behaviour at the
centre and a NFW-like behaviour
in the outskirts.

Robles et al. (2018)



ULDM: Classical Wave

In the following, we will think of ULDM as a free scalar field. Due
to the huge occupation number (Khmelnitsky and Rubakov, 2013),
the ULDM field can be thought as a collection of classical waves

ϕ(x, t) = A(x)cos(mt + α(x))

Energy momentum tensor:

Tµν = ∂µϕ∂νϕ− 1

2
gµν

(
(∂ϕ)2 −m2ϕ2

)
from which

ρDM ≡ T00 =
1

2
m2A2



ULDM: Gravitational interaction

To find the gravitational field produced by ULDM, we can write
(Newtonian gauge)

ds2 = (1 + 2Φ(x, t))dt2 − (1− 2Ψ(x, t))δijdx
idx j

We can split the potentials in t-independent and t-dependent part

Ψ(x, t) ≃ Ψ0(x) + Ψc(x) cos(ωt + 2α(x)) + Ψs(x) sin(ωt + 2α(x))

From the trace of the ij components of Einstein equations

−6Ψ̈ + 2∆(Ψ− Φ) = 8πGTkk

we get:

▶ Ψ0 = Φ0;

▶ Ψc = 1
2πGA(x)

2 = πGρDM(x)
m2

ϕ

▶ Ψs = 0



ULDM: Gravitational delay
Now, remember what we wrote before:
”In order to look for a signal in PTAs, we should model how it
affects the timing residuals!”

∆t(t) = −
∫ t

0

Ω (t ′)− Ω0

Ω0
dt ′

Skipping a little bit of details (Khmelnitsky and Rubakov, 2013), it
turns out that(adapted from Porayko, 2018):

∆t(t) =
Ψc

2mϕ

[
ϕ̂2E sin [2mϕt + 2α(xe)]− ϕ̂2P sin

[
2mϕ

(
t − dp

c

)
+ 2α(xp)

]]
(2)

▶ correlated limit

▶ pulsar-correlated limit

▶ uncorrelated limit
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