

Multi-wavelength view and modeling of the blazar B2 1811+31 in flaring state

Davide Cerasole*

On behalf of MWL collaborators, the MAGIC and Fermi-LAT Collaboration

V Gravi-Gamma-Nu Workshop 2024 Bari, October 10, 2024

 Dipartimento di Fisica 'M. Merlin' dell'Università e del Politecnico di Bari Istituto Nazionale di Fisica Nucleare, Sezione di Bari <u>davide.cerasole@ba.infn.it</u>

Istituto Nazionale di Fisica Nucleare SEZIONE DI BARI

Gamma-ray

Space Telescope

Blazars

- Blazars are active galactic nuclei with jet aligned with our line of sight
 - BL Lac objects are blazars with no or weak emission lines in their optical/UV spectra

 $vF_v = E^2 \frac{dN}{dr}$

- Blazar broad-band spectral energy distribution (SED) shows non-thermal continuum from radio to γ rays with two main bumps
- 1. The first peaks at v_{synch} , which varies from IR to X-rays. Dominated by <u>synchrotron emission by relativistic electrons</u> interacting with the magnetic field in the jet

• $v_{synch} < 10^{14}$ Hz	Low synchrotron-peaked (SP) BL Lacs (LBL)
• $10^{14} \text{ Hz} < v_{synch} < 10^{15} \text{ Hz}$	Intermediate SP BL Lacs (IBL)
• $v_{synch} > 10^{15}$ Hz	High SP BL Lacs (HBL)

- 2. The second bump peaks at energies from MeV to TeV. Less certain origin:
 - <u>Inverse-Compton</u> (IC) scattering of electrons off synchrotron photons (SSC), photons external from the jet (EC) (e.g. dusty torus, accreting disk, BLR, CMB...)
 - <u>Proton</u> synchrotron (PS) or γ -rays from $\pi^0 \rightarrow \gamma \gamma$ decay from photomeson production ($p\gamma \rightarrow N\pi$) or proton-proton collisions

Artistic view of a blazar emitting γ -rays and neutrinos (<u>Credit IceCube - NASA - KM3NeT</u>)

The MAGIC Telescopes

- System of two Imaging Air Cherenkov Telescopes (IACTs) located at the Observatorio del Roque de los Muchachos, La Palma Island, Canaries (2200 m a.s.l.)
 - 17 m diameter parabolic aluminum reflectors
 - PMT-based camera of \approx 1000 pixels
 - Energy range from 20 GeV up to 100 TeV
 - 3.5° FoV
- Up to October 2024 (<u>TeVCat</u>), 88 AGNs detected ad TeV
 - 57 HBLs
 - 10 FSRQs
 - 10 IBLs
 - 2 LBLs
 - 4 blazars, 2 AGNs and
 2 BL Lac objects of unclear type

Most VHE AGNs are HBLs Very few LBLs and IBLs are detected at TeV

Evolution of the integral sensitivity of MAGIC (Aleksic et al. 2016)

B2 1811+31

- z = 0.117 (<u>Giommi et al. 1991, ApJ, 387, 77</u>, tentative value)
- Classified as IBL in TeVCat
- *Fermi*-LAT observations of high state in HE γ rays led to a MWL campaign from radio to (VHE; 100 GeV < E < 100 TeV) γ rays
 - <u>ATel #14060: *Fermi*-LAT detection of a hard-spectrum</u> <u>GeV flare from the BL Lac B2 1811+31 - 2 October 2020</u>
- **MAGIC** announced the first detection of VHE γ -ray emission from B2 1811+31 on October 13, 2020
 - <u>ATel #14090: Detection of very-high-energy gamma-ray</u> emission from B2 1811+31 with the MAGIC telescopes
- Simultaneous MWL campaign during 2020 high state + long-term monitoring over 15 years, from 2008 to 2023
 - HE (*Fermi*-LAT) and VHE γ rays (MAGIC)
 - Optical/UV (Swift-UVOT) and X rays (Swift-XRT)
 - Optical (CRTS, KAIT, ZTF, Würzburg, KVA, Siena)
 - Radio (OVRO, TELAMON)

MAGIC telescopes

OVRO

MAGIC detection of VHE emission from B2 1811+31

- Observations from October 5th to 11th, 2020
 - 5 nights of observations
 - Detection with 5.3 sigma
- Night-wise gamma-ray flux for energies above 135 GeV
- Data from the last 3 observation nights, October 9-11, 2020, combined to evaluate the overall spectrum (see next slide)
- Unfolding for energy dispersion and correction for absorption by the Extragalactic Background Light (EBL)
- Intrinsic spectrum fitted with a **power-law** (PL) function
 - $\Gamma = 3.75 \pm 0.40$
 - $E_0 = 125.16 \text{ GeV}$
 - $N_0 = (7.4 \pm 2.0) \times 10^{-10}$ TeV ⁻¹ cm ⁻² s ⁻¹
 - $\frac{dN}{dE} = N_0 \left(\frac{E}{E_0}\right)^{-\Gamma}$

E(GeV)

2020 flaring-state MWL lightcurve

- Fermi-LAT/Swift-UVOT data show that state during the first MAGIC observation nights (October 5-6, 2020, reddish band) differs from that during the last three MAGIC observations (October 9-11, 2020, blue band)
- The daily gamma-ray variability can be used to set a constraint on the size of the emission region responsible for the gamma-ray flare
 - Method in Foschini L. et al., A&A 530, A77(2011) consists in a lightcurve scan to find minimum doubling/halving time τ , $F(t) = F(t_0)2^{-(t-t_0)/\tau}$
- Upper limit to the emission size region moving with $\delta_{\rm D}$ Doppler factor: $R \leq c \tau \frac{\delta_D}{1+z}$
- Observed variability of ${\bf 3-6}$ hours implies an upper limit of $(3-6)\times 10^{14}\delta_{\rm D}$ cm

Fermi-LAT trigger

Long-term MWL lightcurve

Fermi-LAT trigger

- Coherent high state at HE gamma-rays, X rays and in optical/UV
- The 2020 HE γ -ray flare occurs at the apex of an increase in the **optical activity lasting** for several years
- Hint of long-term correlation with no delay of the optical and γ-ray lightcurves
 - Commonly found for FSRQs, LBLs and IBLs
- Different trend in long-term radio monitoring
 - Bulk of the emission in radio originated in regions different from those responsible for the high state in optical, X and γ -ray bands
- *Top panel*: shaded areas indicate the 'Pre-flare', 'Flare', and 'Post-flare' periods
 - Detailed HE γ -ray spectral analyses in these three periods are described in slide 11

MWL cross-correlation analyses in slide 12

Long-term optical-to-X-ray SED evolution

- Long-term Swift-UVOT and Swift-XRT observations were employed to characterize the source variability in the optical/UV and X-ray bands.
- 2020 flare: **optical/UV** flux is a **factor 2 higher** than the values during the low state
- X-ray variability over 2 decades at 1 keV

Long-term optical-to-X-ray SED evolution

- Long-term Swift-UVOT and Swift-XRT observations were employed to characterize the source variability in the **optical/UV** and X-ray bands.
- 2020 flare: optical/UV flux is a factor 2 higher than the values during the low state
- X-ray variability over 2 decades at 1 keV
- X rays: harder-when-brighter trend
 - Can be observed in blazars with X-ray emission dominated by the synchrotron radiation from the highest energy electrons accelerated in the jet
- Pearson r = -0.77 (p-val = 2.2×10^{-6}) between X-ray spectral index and $\log F_X$
- Synchrotron emission from population of electrons $n_e(\gamma) \propto \gamma^{-p}$ has SED $\upsilon F_{\upsilon} \propto \upsilon^{\frac{3-p}{2}}$

9

Low and high source states classification

- Simultaneous observations were used to classify the source states according to the synchrotron peak frequency v_{synch}
- Quadratic function in the $\log_{10} \nu - \log_{10} F_{\nu}(\nu)$ space $\nu F_{\nu}(\nu) = f_0 \ 10^{-b} \left(\log_{10}(\nu/\nu_{synch}) \right)^2$
- Low state
 - $v_{synch} \approx 10^{14.71\pm0.03}$ Hz
 - IBL during non-flaring state
- 2020 high state
 - $v_{synch} \approx 10^{15.21\pm0.23}$ Hz
 - Borderline between IBL/HBL during flaring state
- Significant shift upwards in the synchrotron peak frequency during the 2020 high state

Long-term HE gamma-ray SED evolution

- Spectral analyses in the 100 MeV 1 TeV range yield evidence for **strong spectral hardening** during the high-energy flare period in 2020
- Peak frequency of the high-energy SED bump shifts to higher frequencies during the flare, with spectral break lying likely at tens of GeV
- Signature of **freshly accelerated particles** in the jet encountering strong magnetic fields

Period	Start	Stop	Γ_{PL}	$F (>100 \text{ MeV}) \times 10^{-8}$
	[MJD]	[MJD]		$[\text{ph cm}^{-2} \text{ s}^{-1}]$
Pre-flare	54682	58940	2.11 ± 0.03	1.7 ± 0.1
Flare	58940	59190	1.83 ± 0.02	9.6 ± 0.5
Post-flare	59190	59945	2.04 ± 0.05	1.9 ± 0.3

Multi-band cross-correlations

- These can be used to look for **signatures of multiple emission components** in the jet
- z-transformed Discrete Correlation Function (zDCF) to quantify correlation between
 - HE γ rays, optical R-band, radio 15 GHz
- Confidence levels (CLs) estimated simulating uncorrelated lightcurves following <u>Emmanoulopoulos D. et al. (2013)</u>
- Power Spectral Densities (PSDs) of the long-term lightcurves fitted with PLs: $PSD(\omega) = A\omega^{-\beta}$
 - $\beta_{\gamma} = 1.1$
 - $\beta_{\text{R-band}} = 1.5$
 - $\beta_{\text{Radio}} = 2.3$
- HE γ rays/optical R-band correlation with 95% CL
- Radio not significantly correlated with γ or optical

Uncorrelated

lightcurves

B2 1811+31

HE y-rays > 100 MeV (Fermi-LAT, 30 days bins) vs 15 GHz (OVR)

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0 -1000

-750

-500

ЪСF

(b) Correlation with 95% CL of long-term γ -ray and R-band light-curves.

(d) zDCF of the long-term R-band and 15 GHz light-curves.

Time lag [days] (c) zDCF of the long-term HE γ -ray and 15 GHz light-curves.

-250

3σ band

1σ band

750

500

Summary and conclusions

- The blazar **B2 1811+31** entered the catalog of **TeV-detected** sources in 2020 thanks to the detection by the MAGIC telescopes, in a MWL campaign following the *Fermi*-LAT observations of high state
- B2 1811+31 behaved as IBL in quiet state and as borderline IBL/HBL during the flaring state
 - ISP BL Lacs are rare sources in the TeV sky
- MWL coverage from radio to VHE γ -rays during the high-state and analysis of long-term MWL data provide a unique way to investigate the **dynamics** and **emission mechanisms** of particles accelerated in the jet in both the **steady and flaring states**
- During the 2020 flare, both SED bumps shifted to higher flux levels and higher energies
- The *Fermi*-LAT lightcurve showed **fast variability of few hours**, providing an UL of $\approx 6 \times 10^{14} \delta_D$ cm to the size of the emission zone responsible for the γ -ray flare detected by the MAGIC telescopes
- Multi-band cross-correlations can act as guidance to the broad-band SED modelling

Thank you for your attention!

IFN Istituto Nazionale di Fisica Nucleare SEZIONE DI BARI