# **Probing the early X-ray emission of** short Gamma-Ray Bursts in the Multi-Messenger Era

The Fifth Gravi-Gamma-Nu workshop

Bari, 9-11 October 2024

#### Annarita lerardi







#### Short GRBs in the multi-messenger era

- Most of short GRBs originate from binary neutron star mergers
- Early X-ray emission of short GRBs can provide a precise localisation of multimessenger events
- Newly launched wide-field X-ray monitors could detect these sources



### X-ray emission of GRBs

- The Swift satellite collected a vast archive of GRB X-ray observations over the last 20 years
- Steep decay in X-ray lightcurve is usually interpreted as the tail of prompt emission
  [Fenimore et al. 1996; Kumar & Painaitescu 2000]
- In long GRBs, we can observe the connection between pulses in hard X-rays and steep decline in soft X-rays



#### X-ray emission of short GRBs

- The prompt-to-afterglow transition is more difficult to study in short GRBs
- In short GRBs we can monitor steep decay for longer time (~15 minutes) compared to long GRBs (~2 minutes)

In this work, we systematically analyse the temporal and spectral evolution of early X-ray emission in short GRBs



1. Swift BAT catalog



- **138** have  $T_{90}^{BAT}$  (15-350 keV) < 2 s
- 472 detected also by Fermi GBM

1. Swift BAT catalog



• GRBs long in BAT and short in GBM (9)

Annarita lerardi

The Fifth Gravi-Gamma-Nu workshop







#### **Final sample**



**12** GRBs have EE detected by BAT

### **2.** Data analysis

#### **XRT data analysis**

- Time-resolved spectral analysis of XRT data in [0.3 - 10] keV energy range
- Spectrum model: absorbed power-law
- The absorber column density  $N_H^z$  and the photon index are degenerate

To break this degeneracy, the spectra of the different temporal bins are fitted together, leaving  $N_H^z$  as free common parameter



#### Annarita lerardi

#### The Fifth Gravi-Gamma-Nu workshop



#### **BAT data analysis**

- Spectral analysis of BAT short pulse and EE (if any) in [15-150] keV energy range
- Spectrum model: power-law
- Extrapolation of BAT spectrum to XRT energy range
- Photon index and flux in [0.3-10] keV are interpreted as upper limits



#### **BAT and XRT spectral analysis**

![](_page_15_Figure_1.jpeg)

#### The Fifth Gravi-Gamma-Nu workshop

#### **3.** Temporal evolution

#### **BAT+XRT lightcurve fit**

Cutoff PL + sBPL (if needed) to model the BAT+XRT flux in [0.3-10] keV

![](_page_17_Figure_2.jpeg)

Annarita lerardi

The Fifth Gravi-Gamma-Nu workshop

#### **BAT+XRT** lightcurve fit

Distribution of the best-fit parameters

![](_page_18_Figure_2.jpeg)

Annarita lerardi

The Fifth Gravi-Gamma-Nu workshop

## 4. Modelling

### Modelling

- Empirical modelling of early XRT flux and spectral evolution
- Generic non-thermal spectrum (Band function), whose peak is transiting across the XRT band
- Test if X-ray lightcurve and spectral evolution can be caused by fading of prompt emission
- Free parameters of the model:  $E_{peak}^{0}, EF_{E,peak}^{0}, \alpha, \beta, \gamma, \delta$

![](_page_20_Figure_5.jpeg)

#### **Modelling**

 $\alpha = -1.12^{+0.05}_{-0.04}$ 

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

The Fifth Gravi-Gamma-Nu workshop

#### **Modelling**

GRB080503

![](_page_22_Figure_2.jpeg)

#### **5.** Detectability

#### **Detectability with wide-field X-ray cameras**

![](_page_24_Figure_1.jpeg)

#### Summary

- All short GRBs in our sample show spectral softening in early X-ray emission
- Flux in soft X-rays can be modelled with two components
- We interpreted temporal and spectral evolution as the cooling of a non-thermal spectrum
- This category of short GRBs can be detected by current wide-field X-ray monitors

![](_page_25_Figure_5.jpeg)

# Backup

![](_page_27_Figure_1.jpeg)

BAT duration not available

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_1.jpeg)

#### **BAT and XRT spectral analysis**

![](_page_32_Figure_1.jpeg)

#### **BAT and XRT spectral analysis**

![](_page_33_Figure_1.jpeg)

#### **Temporal evolution**

**12** GRBs show a **steep decay** in the XRT lightcurve

![](_page_34_Figure_2.jpeg)

# 6 GRBs show a **standard decay** in the XRT lightcurve

![](_page_34_Figure_4.jpeg)

#### **XRT lightcurve fit**

Smoothly broken power-law (sBPL) to model the early XRT lightcurve

![](_page_35_Figure_2.jpeg)

Power-law (PL)

to model the early XRT lightcurve

#### **XRT lightcurve fit**

![](_page_36_Figure_1.jpeg)

-7

 $\alpha_2$ 

-8

-5

-6

-3

-4

0

-10

-9

![](_page_36_Figure_2.jpeg)

![](_page_37_Figure_0.jpeg)

Both models overshine BAT upper limits!

Annarita lerardi

GRB forum 2024

#### **BAT+XRT lightcurve fit**

![](_page_38_Figure_1.jpeg)

#### Long/short GRB comparison

![](_page_39_Figure_1.jpeg)

![](_page_39_Figure_2.jpeg)

#### Long/short GRB comparison

![](_page_40_Figure_1.jpeg)

#### **Peculiar GRBs**

#### **Supernova-less long GRB**

![](_page_42_Figure_1.jpeg)

#### Oddball

![](_page_43_Figure_1.jpeg)

![](_page_44_Picture_0.jpeg)

GRB211211A

![](_page_44_Figure_2.jpeg)