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PlA signal from SuperMasﬁive Black Hole Binaries (SMBHBs) -~~~

o SMBHBs emit in the PTA band during the inspiral phase -> the signal is always present throughout the observation period
e Since many many SMBHBs are expected to populated our universe, we expect to see the incoherent superposition of their GW emissions
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Modelled in the frequency domain as a power-law spectrum
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Modelled in the frequency domain as a power-law spectrum

f —AaAGWB
h:.(f) = Agws ( ) , Agwp = 2/3
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= very massive and closeby sources that can be
sinqularly resolved

-> their template s(t) in the time domain is
deterministic




 Lontinuous Gravitational Wave model .
Pulsar term
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Pulsar term

Promising
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~ Continuous Gravitational Wave model . - "

Pulsar term

Promising

/ sft) - Sp(tp) ] candidates for

multimessenger
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Lurrent status and .Per,S,Pec£ivCSQf (W searches - e

Currently, PTA dataset show no significant evidence in favour of a single resolved source:

C6W present on top of the GWB ——————

Bayes factor OB+ 001 - 0.7 EPTA DRZ 10yr
No CoM Present//GWB 04 NANOGrav Toyr

Future PTA experiments, like SKA, should perform much better at high frequencies (above 10nHz), where the background is low
and detecting single sources is easier

L __ EPTA DR 2oyr,
bx SKA 30yr with 200 pulsars 15 pulsars

~ 20-55 resolved sources ) SKA 30y,
(= single sources with SNR> above the GWB) | = 200 pulsars

7
I3} TRUANT ET AL, 204
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Realistc simu\ati.ons of EPTA DR? with single resolved sources -~

We performed some realistic simulations of PTA datasets with detectable single sources to test the performance of the current COW analysis pipeline




w of EPV\ DRZ with single resolved sources i

We performed some realistic simulations of PTA datasets with detectable single sources to test the performance of the current COW analysis pipeline
|

15 pulsars of EPTA DRZ, 25yr / datasets are used with / different sir\w"q|e SOUrCes:

Both sources are in the Virgo cluster and have chirp mass of 2107 M
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'BnHZ CGW simul'ations”— re‘sults
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By Parameters are mostly recovered unbiased
Mass and luminosity distance are poorly constrained because the frequency
evolution is beyond the PTA resolution in frequency:

AF=At) - f(tp) = (01nHz

EPTA Zoyr resolution = 1.3nHz
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T0nHe COW smoations - resuls .~
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Mass and luminosity distance are well constrained because the frequency
evolution is bigger than the PIA resolution in frequency:
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(bW s'imulations. - source |6ca|ization and host galary identification

Size of the sky localization error box (561 (1)
f=0nllz, SNR=7 -> AQ ~ 426 deg
f=20nHz, SNR=10 -> AQ ~ 2153 deg’

RA = 12h(33#3Z)min

DEC = (8.0*7)°
f=0nfz . =
45°




(W s‘imulations. - source |6ca|ization and host galaxy identification

U] VT [EUTEUEY T T T

Size of the sky localization error box (667 (1) ;ﬁiy’fﬁifegz L AQ ~ 1153 deg’
f=0nllz, SNR=7 -> AQ ~ 426 deg b o=~ | By comparing the emor bor with catelogs of massive galaxies
f=20nHz, SNR=10 -> AQ ~ 2153 deg’ f ke 1 atz <005, we can estimate:
RA = 12033 TSR % | # galaxies in the error box ~ 300-350
f = Stz s DEC=(BOHY | B | Using also the inference of the chirp mass and luminosity

:14h40m 20m Q0™ 13h4Qm 2(-)-n distance,#of POSSibIE hOStS ~ 40‘70
o Host candidates within the error box

- ° Host candidates after cut in chirp mass and distance @ PETROV EI AL, 2024
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(oW S.imulatiOﬂS. - source |6ca|ization and host galaxy identification
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AQ ~ 1153 deg’

By comparing the error box with catalogs of massive galaxies
ot 7 < 005, we can estimate:
# qalaxies in the error box ~ 300-350

Using also the inference of the chirp mass and luminosity

distance, # of possible hosts ~ 40-/0

- ° Host candidates after cut in chirp mass and distance @ PETROV EI AL, 2024

RA = 120(7+23ymin Realistic simulations

5 DEC=(13.1752)° results follow the

expected scaling
AQ oc SNR2




(oW S.imulatiOﬂS. - source |6ca|ization and host galaxy identification
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Size of the sky localization error box (561 (1) i e AQ ~ 1153 deg’
f=0nllz, SNR=7 -> AQ ~ 426 deg’ b s~ | By comparing the eror box with catologs of massive galaies
f= 20nHz, SNR=10 -> AQ ~ 253 deg’ By 1 atz <005, we can estimate:
= 1203 TS % | galaxies in the error box ~ 300-350
f = Snlfz DEC = (805 g

o T T | Using also the constraints on the chirp mass and

0 P WA R oo oonaon 0o luminosity distance, # of possible hosts is ~ 40-70
S o Host andidates within the ror bor

- ° Host candidates after cut in chirp mass and distance @ PETROV EI AL, 2024
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RA = 1207+ g2y Realistic simulations  Fy SKA 30yr with 200 pulsars OF these, 10% have SNR>15
e oSl results follow the ~ 20-55 resolved sources  -> the error box on the sky
> expected scaling localization can qo down to

SRR aEEE AQ ocSiR? (L TOANTETAL 20 §)-14eg

-> # of possible host qalaxies can go down to 20 - 1 galaxies!




Summary

. ;'qule resolved SOUrCes haven Eyet be observed hut ¢ hey are very ||ke|y 0 be de ected on op of hesochas i GWB by e
future PIA experiments e | i
e Since t hey can be loca|rzed int he sky, hey are promrsrng candrdates o perform multrmessenger observatrons
2 ' Realiic simultos o PTA experrmen s have shown thel ™ models currently used for CGW searches can estrmate the
source parameters without bras and with he precson expee ted from ana|y ica studies - . * .

. f*.Future PTA experiments are |ike|y to have the opportunity " detect smgle sources wi SNP > 15, allowing the ioentif_ication -
- of the host galaxy and thus opening the doors to the observation of electromagnetic counterparts - - i
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~ Continuous Gravitational Wave waveform. -
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