

Searching for long faint astronomical high energy transients: a data driven approach

Riccardo Crupi, Giuseppe Dilillo, Kester Ward, Elisabetta Bissaldi, Fabrizio Fiore, Andrea Vacchi

October 2024 - Gravi-Gamma-Nu

SPOKE 3 ASTROPHYSICS & COSMOS OBSERVATIONS

ICSC Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing INTESA

Time series use cases:

- Data Quality control on banking accounts
 Fraud Detection
 - 3. Anomalies in Time Series

Summary

- Sensitivity demonstration for HERMES
- New method to estimate the background via a Neural Network
- Use Poisson-FOCuS to trigger events and present some results
- Propose an automatic classification of the events identified

GRB

GRB

Spacecraft for X/y observations

Fermi GBM

HERMES

Spacecraft for X/y observations

Charles Meegan, et al. "The fermi gamma-ray burst monitor." The Astrophysical Journal, 702(1):791, 2009. Elisabetta Bissaldi, et al. "Ground-based calibration and characterization of the fermi gamma-ray burst monitor detectors." Experimental Astronomy, 24(1-3):47–88, 2009.

Background estimation

Background estimation

Background physical model*:

- Detector Response Matrices (DRMs)
- Earth albedo
- South Atlantic Anomaly (SAA)
- point sources (e.g., the Sun)
- extended sources (e.g., cosmic gamma-ray background)
- McIlwain L-parameter (magnetic intensity)
- Other factors...

ML Background estimation

Input variables:

- Latitude satellite
- Longitude satellite
- Altitude satellite
- Detectors pointing
- Sun position
- McIlwain L-parameter
- ...

ML Background estimation

Input variables:

- Latitude GBM
- Longitude GBM
- Altitude GBM
- Detectors pointing
- Sun position
- McIlwain L-parameter
- ...

output variables:

- Counts det n0
- Counts det n1
- • •
- Counts det n9
- Counts det na
- Counts det nb

ML Background estimation

Input variables:

- Latitude GBM
- Longitude GBM
- Altitude GBM
- Detectors pointing
- Sun position
- McIlwain L-parameter

output variables:

- Counts det n0
- Counts det n1
 - • •
- Counts det n9
- Counts det na
- Counts det nb

4 seconds bin

Energy range (KeV): [28, 50], [50, 300], [300, 500]

n4_r1 2019-05-21 00:00:01.977903

Predicted vs Detected

=¹⁰³

- 10⁰

- 0

-	det range	MAE train	MAE test	
-	r0	4.942 ± 0.331	4.953 ± 0.328	1
= 10 ²	r1	6.088 ± 0.167	6.098 ± 0.163	
-	r2	1.790 ± 0.044	1.792 ± 0.045	
_	average	4.273	4.281	Î

Trigger algorithm

Trigger algorithm: Poisson-FOCuS

- Conventional algorithms checks for counts excess over pre-defined timescales.
- FOCuS tests for count excess over timescales which are optimal and dynamically assessed.
- Faster and more accurate (less false negatives).

GRB 190320

16

Results

75°

270

n1

-75°

na

150

n7

n6

no

n4

180

60°

300

-60 °

45°

330°

-45 °

30

15°

0°

-15

-30

Attempting an automatic classification

type of transient	num. known	num. unidentified	total
GRB	127	30	157
\mathbf{SF}	78	24	102
$\mathrm{UNC}(\mathrm{LP})$	3	57	60
GF	0	10	10
TGF	1	8	9
UNC	1	3	4
\mathbf{FP}	0	52	52

Data periods:

- November 2010 to 19 February 2011
- January 2014 to 28 February 2014
- March 2019 to 9 July 2019

Attempting an automatic classification

Feature extracted ~ 200: statistical, wavelet transform, catalog info.

Thank you, I hope you have been triggered

crupi.riccardo@spes.uniud.it riccardo.crupi@intesasanpaolo.com

GitHub repository https://github.com/rcrupi/DeepGRB

References

- Riccardo Crupi, Giuseppe Dilillo, Kester Ward, Elisabetta Bissaldi, Fabrizio ٠ Fiore, Andrea Vacchi: Searching for long faint astronomical high energy transients: a data driven approach. Experimental Astronomy 56.2 (2023): 421-476.
- Kester Ward, Giuseppe Dilillo, Idris Eckley, Paul Fearnhead. • Poisson-FOCuS: An efficient online method for detecting count bursts with application to gamma ray burst detection. Journal of the American Statistical Association (2023): 1-13.

Backup slides

NN hypermarameters

- Optimizer: Nadam
- Batch normalization and dropout 0.02 each hidden layer
- Decay learning rate 0.01 first 4 epochs, 0.0016 up to 12 epochs and then 0.0004
- Batch size: 2000
- Max epochs: 64
- L1 loss (Mean Absolute Error)

Results

GRB 190404B

Data 1	med	
SN .	32.9	http://maxi.riken.jp/grbs/190404b/
Flux (×10 ⁻⁸ erg cm ⁻² s ⁻¹)	1.09 ± 0.08	
Hardness	0.27 ± 0.06	
Time bin	1 sec	

light curves

no effective area correction

The MAXI/GSC nova alert system triggered on a bright uncatalogued X-ray transient source at 13:14:08 UT on 2019 April 04. Assuming that the source flux was constant over the transit,

we obtain the source position at (R.A., Dec) = (220.987 deg, -22.632 deg) = $(14 \ 43 \ 56, -22 \ 37 \ 55) (J2000)$ with a statistical 90% C.L. elliptical error region with long and short radii of 0.13 deg and

0.11 deg, respectively.

GCN:

https://gcn.gsfc.nasa.gov/gcn3/24049.gcn3 https://gcn.gsfc.nasa.gov/other/190404.gcn3

Swift afterglow:

https://www.swift.ac.uk/xrt_live_cat/20887

Results

Event 190420

26

INIVERS

Results

27

det range	MAE train	MAE test
r0	4.942 ± 0.331	4.953 ± 0.328
$\mathbf{r1}$	6.088 ± 0.167	6.098 ± 0.163
r2	1.790 ± 0.044	1.792 ± 0.045
average	4.273	4.281

Table 1: The NN MAE loss function (\pm standard deviation) per energy range, over the training and the testing datasets, averaged on detectors. The complete table can be found in table 7).

UNIVERSITÀ DEGLI STUD DI UDINE

Background estimation

GRB 091024

Background estimation

n5_r0 2013-12-31 23:59:55.455420

Solar Maxima Minima

Partial input - output

1-4	les.	-16	-0 -1	-0
lat	ION	alt	nu_dec	nu_ra
-21.74720	16.13370	536687.34686	-60.61029	193.13023
-21.68540	16.38606	536703.44551	-60.45834	193.21557
-21.62316	16.63820	536719.48134	-60.30667	193.30146
-21.56049	16.89012	536734.64282	-60.15521	193.38776
-21.49737	17.14180	536750.18760	-60.00350	193.47457
-21.43384	17.39325	536765.63889	-59.85207	193.56186
-21.36987	17.64446	536780.25793	-59.70084	193.64969
-21.30547	17.89543	536795.28120	-59.54942	193.73788
-21.24065	18.14616	536809.89110	-59.39822	193.82666
-21.17541	18.39666	536825.25390	-59.24726	193.91585
-21.10975	18.64692	536840.85849	-59.09606	194.00553
-21.04367	18.89693	536855.23207	-58.94514	194.09561
-20.97716	19.14671	536869.53731	-58.79449	194.18599
-20.91025	19.39625	536884.27429	-58.64356	194.27703
-20.84292	19.64555	536898.11610	-58.49301	194.36832
-20.77518	19.89461	536911.85559	-58.34254	194.46017
-20.70703	20.14341	536925.07311	-58.19195	194.55239
-20.63847	20.39198	536939.09638	-58.04163	194.64502
-20.56950	20.64031	536952.73061	-57.89151	194.73807
-20.50013	20.88840	536965.88525	-57.74122	194.83153

-0-0	n0 r1	-0 -2
10_10	11_011	10_12
131.84344	2/5.5613/	46.64100
274.10376	548.45300	91.94076
280.94550	541.39386	92.78934
280.45737	535.99884	95.24504
280.56808	537.93964	94.87277
266.68027	535.44684	97.44323
264.70062	534.06450	100.62796
265.55270	535.52313	97.31207
262.96994	521.39954	92.15605
266.53240	521.16160	93.38451
265.80035	529.88270	95.71757
263.83970	521.91174	91.17808
264.19520	509.61572	90.19204
267.47410	504.76535	93.12515
270.79575	513.12540	91.04234
257.90674	513.11414	89.93607
249.80258	503.28592	89.44306
257.17477	505.39258	91.40993
253.60439	498.98840	87.97018
252.25041	490.51416	83.91988

https://www.r-bloggers.com/2012/03/how-not-to-draw-a-probability-distribution/

Robitzsch, Alexander. "Lp loss functions in invariance alignment and Haberman linking with few or many groups." Stats 3.3 (2020): 246-283.

Figure 11. Energy dependence of the effective area at normal incidence, for both detector types. The lower panel includes the simulated effects of the spacecraft for a representative detector.

XAI - Anchor rule

Anchor rule on RF for SF: (diff_sun ≤ 32.58 AND HR10 ≤ 0.27)

UNIVERSITÀ DEGLI STUDI DI UDINE

DATACIANING

