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Intorduction

What is a Dilaton?
A Nambu-Goldstone boson of a spont. broken scale (dilatation)
symmetry.
If scale symmetry is only approximate, we get a pseudo NGB instead,
also called dilaton.

Why would one be interested in light dilaton?

It can serve as a scalar analog of the graviton. (Sundrum ’03)

If SM is embedded in a CFT, a dilaton could have similar
properties as the Higgs. (Goldberger, Grinstein, Skiba ’08)

It can serve as a force mediator between dark matter and normal
matter. (Bai, Carena, Lykken ’09)

If the dilaton is sufficiently decoupled, can serve as a dark
matter candidate. (Choi, Hong, Matsuzaki ’11)
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Intorduction

Review of Scale Symmetry

Scale transformation takes

x → eαx

φ(x) → eαdφφ(eαx)

Classical: theory without dimensional parameters is scale invariant.
Quantum: scale invariance is broken by renormalization effect.

Scale invariance is recovered if there is a (non-trivial) fixed point.

Along RG trajectory close to the fixed point, one usually has
approximate scale invariance.
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Coupling runs from UV fixed point (origin) to IR fixed point
(which it reaches in exponential RG-time).
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Intorduction

(Approximate) Scale Invariant Theory

A schematic β function of the theory.
The coupling flow toward the “would
be” IR fixed-point, g∗.
Close to the fixed-point, the flow is
slow and the theory posses approxi-
mate scale symmetry.

β(g)

gg∗

If the RG-trajectory reaches g∗, scale invariance becomes exact.

However, some degree of freedom in the theory can get a vev. If this
happens close to the fixed-point, scale invariance is spontaneously
broken and one expect a dilaton in the spectrum.

A field theory with this behavior is not common!
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Intorduction

(Approximate) Scale Invariant Theory (cont.)

Walking Technicolor has been one of the widely studied theories of
this type.
In this framework, the fixed-point is strongly interacting. As a result,
fermion condensate is formed and scale invariance is broken.
But a strong interacting nature of the model makes it difficult to
analyze analytically.
In particular, the existence of a light dilaton in WTC is not clear and
is a subject of a recent debate:

Yes (Appelquist, Bai ’10)

No (Hashimoto, Yamawaki ’10; Vecchi ’10)

Having a perturbative toy model with the above properties – an
interacting fixed-point and an approximate scale invariance which is
broken dynamically, would help us study such a question.
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First, review QCD:

Walking Technicolor in Pictures
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WTC:

(ETC scale)
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10

The quark mass:

Lmass =
C(µ)
M2

�Q̄Q�(µ) q̄q =
C(M)
M2

�Q̄Q�(M) q̄q =
C(Λ)
M2

�Q̄Q�(Λ) q̄q

o(1)

hidden 
dependence 

on Λ/M o(Λ3)

Renormalization Group: C(Λ) =
�

M

Λ

�γ∗ The central observation: large 
coupling gives large anomalous 
dimension
It is argued that γ* ≅ 1

Lmass =
C(M)
MΛ

�Q̄Q�(Λ) q̄q ⇒ mq ∼ C(M)
Λ2

M

Hence

Bonus: in non-minimal TC this also raises the mass of pseudo-goldstone bosons:

If                                  then                has dimension 4 (marginal operator).  (Q̄Q)(Q̄Q)γ(Q̄Q)(Q̄Q) ≈ 2γ(Q̄Q) ≈ 2
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Intorduction

(Approximate) Scale Invariant Theory (cont.)

Walking Technicolor has been one of the widely studied theories of
this type.
In this framework, the fixed-point is strongly interacting. As a result,
fermion condensate is formed and scale invariance is broken.
But a strong interacting nature of the model makes it difficult to
analyze analytically.
In particular, the existence of a light dilaton in WTC is not clear and
is a subject of a recent debate:

Yes (Appelquist, Bai ’10)

No (Hashimoto, Yamawaki ’10; Vecchi ’10)

Having a perturbative toy model with the above properties – an
interacting fixed-point and an approximate scale invariance which is
broken dynamically, would help us study such a question.
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Why is it non-straightforward?

• SSB in CFT? How? Take, e.g., N=4 SUSY SU(N)
Flat directions. Expand about point away from origin.
SU(N) -> SU(N-k) x SU(k) x U(1). But N=4 SUSY unbroken. 
“Dilaton” is exactly massless and corresponds to radial
direction along flat directions. There already, not a real dilaton 
(does not appear as dilaton in low energy effective theory).

• Better try: Coleman-Weinberg abelian-higgs model.
Fine tune mass to zero, scale invariance classically.
Effective potential develops a minimum away from origin.
Gauge and scale symmetries spontaneously broken. 
Gauge field acquires mass. 
But would-be-dilaton acquires mass too: trace anomaly
spoils scaling symmetry. 

M(dilaton)/M(vector)  ~ e2/16π2

•Want: arbitrarily light dilaton without turning off interactions
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The Model

The Model
SU(N) gauge theory with nψ = nχ fundamental fermions ψ and χ
and two scalar singlets φ1 and φ2.

L = −
1

2
TrFµνFµν +

nχ
∑

j=1

(

ψ̄j i /Dψj + χ̄j i /Dχj

)

+
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2

− y1
(

ψ̄ψ + χ̄χ
)

φ1 − y2(ψ̄χ+ χ̄ψ)φ2

−
1

24
λ1φ

4
1 −

1

24
λ2φ

4
2 −

1

4
λ3φ

2
1φ

2
2

This theory is invariant under discrete Z2 as well as SU(nχ) symmetry

φ1,ψ → φ1,ψ

φ2,χ → −φ2,−χ
and

ψ → Uψ

χ → Uχ

Patipan Uttayarat (UCSD Physics) A Very Light Dilaton May 25, 2011 7 / 28

Friday, June 24, 2011



Notate bene:

Masses set to zero (I am not solving the hierarchy problem).
This is precisely as with Coleman and Weinberg.
You can set them to zero and use dimensional regularization.

Theory has Landau pole. This is a UV issue. We study
the IT properties of the model. We can take it to be a cut-off theory.

This is not the theory of everything.
It is a Toy Model that displays some behavior that mimics WTC
and may answer some questions.
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The Model Fixed-point Structure

MS β Functions
For large N with nχ = 11N/4 (1− δ/11), the leading terms are

(16π2)
∂g

∂t
= −

δN

3
g 3 +

25N2

2

g 5

16π2

(16π2)
∂y1
∂t

= 4y1y
2
2 + 11N2y 3

1 − 3Ng 2y1

(16π2)
∂y2
∂t

= 3y 2
1 y2 + 11N2y 3

2 − 3Ng 2y2

(16π2)
∂λ1

∂t
= 3λ2

1 + 3λ2
3 + 44N2λ1y

2
1 − 264N2y 4

1

(16π2)
∂λ2

∂t
= 3λ2

2 + 3λ2
3 + 44N2λ2y

2
2 − 264N2y 4

2

(16π2)
∂λ3

∂t
= λ1λ3 + λ2λ3 + 4λ2

3

+ 22N2λ3y
2
1 + 22N2λ3y

2
2 − 264N2y 2

1 y
2
2
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The Model Fixed-point Structure

Fixed-point
To get a fixed-point for the gauge coupling, need to balance a 1-loop
against a 2-loop.

This is possible because for large N, δ can be made small by a
carefully chosen nχ.

The fixed-point to leading order in 1/N is

g 2
∗ = 16π2 2

75

δ

N

y 2
1∗ = y 2

2∗ =
3

11

g 2
∗

N

λ1∗ = λ2∗ = λ3∗ =
18

11

g 2
∗

N
= 6y 2

1∗
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The Model Vacuum Structure

Effective Potential
At tree-level, 〈φi〉 = 0 and all the particle are massless. The theory
flows to the IR fixed-point.

However, quantum effect could drastically change the structure of the
vacuum (Coleman, Weinberg ’73)

V0(φ)

φ φ

Veff(φ)

The non-trivial vev gives mass to both fermions and scalars and alters
the RG trajectory.
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The Model Vacuum Structure

Effective Potential (cont.)

The effective potential in MS is

Veff = −
1

24
λ1φ

4
1 −

1

24
λ2φ

4
2 −

1

4
λ3φ

2
1φ

2
2

−
11N2M4

f+

(64π2)

(

ln
M2

f+

2µ2
−

3

2

)

−
11N2M4

f−

(64π2)

(

ln
M2

f−

2µ2
−

3

2

)

+
M4

s+

(64π2)

(

ln
M2

s+

µ2
−

3

2

)

+
M4

s−

(64π2)

(

ln
M2

s−

2µ2
−

3

2

)

Mf± = y1φ1 ± y2φ2,

M2
s± =

(λ1 + λ3)φ2
1 + (λ2 + λ3)φ2

2

4

±
√

(λ1 − λ3)2φ4
1 + (λ2 − λ3)2φ4

2 − 2(λ1λ2 − λ1λ3 − λ2λ3 − 7λ2
3)φ

2
1φ

2
2

4
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The Model Vacuum Structure

Effective Potential (cont.)
Minimizing the potential analytically is difficult. But easy to identify
some local minima. Focus on minimum which preserves discrete Z2

(i.e. 〈φ2〉 = 0).
The potential reduces to

Veff =
λ1

24
φ4
1 +

(λ1φ2
1)

2

256π2

(

ln
λ1φ2

1

2µ2
−

3

2

)

+
(λ3φ2

1)
2

256π2

(

ln
λ3φ2

1

2µ2
−

3

2

)

−
22N2y 4

1φ
4
1

64π2

(

ln
y 2
1φ

2
1

µ2
−

3

2

)

The extremum, ∂/∂φ1Veff(〈φ1〉) = 0, is at

−
λ1

6
=

λ2
1

64π2

(

ln
λ1〈φ1〉2

2µ2
− 1

)

+
λ2
3

64π2

(

ln
λ3〈φ1〉2

2µ2
− 1

)

−
88N2y 4

1

64π2

(

ln
y 2
1 〈φ1〉2

µ2
− 1

)
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The Model Vacuum Structure

Vacuum Expectation
λ1 can be traded with 〈φ1〉 as a free parameter. For consistency,
λ1

16π2 ln
〈φ1〉2

µ2 # 1. Stability of the vev is determined from the
eigenvalues of second derivative matrix

∂2

∂φ2
1

Veff(〈φ1〉, 0) =
λ2
3 − 88N2y 4

1

32π2
〈φ1〉2

∂2

∂φ2
2

Veff(〈φ1〉, 0) =
λ3

2
〈φ1〉2 +O(1-loop)

Evaluate Veff at 〈φ1〉 yields

Veff(〈φ1〉) = −
λ2
3 − 88N2y 4

1

512π2
〈φ1〉4

Thus when ε ≡ λ2
3 − 88N2y 4

1 ≥ 0, there is a non-trivial minimum.
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The Model Vacuum Structure

Role of φ2

Note that φ2 never entered into any calculation.
Moreover, one can get an attractive IR fixed-point with just one
scalar singlet. This raise the question, what is the purpose of the
second singlet?
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The Model Vacuum Structure

Role of φ2

Note that φ2 never entered into any calculation.
Moreover, one can get an attractive IR fixed-point with just one
scalar singlet. This raise the question, what is the purpose of the
second singlet?

It allows us to introduce more couplings, in particular the
cross-coupling λ3.

Without the second singlet, the extremum found by perturbative
analysis would have been the maximum.

! The scalar potential appears to be unbounded from below.
! Possible to have non-trivial minimum at higher scale which is

inaccessible to perturbative analysis.
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The Model Spectrum

Pole mass in Broken Phase
The explicit 1-loop pole masses are

Mψ(µ) = Mχ(µ) = y1v

[

1−
g 2

16π2

N

2

(

3 ln
y2
1 v

2

µ2
− 4

)]

M2
φ1

=
λ1v

2

2
+

3λ2
1v

2

64π2

(

ln
λ1v

2

2µ2
−

5

3
+

2π

3
√
3

)

+
3λ2

3v
2

64π2

(

ln
λ3v

2

2µ2
−

1

3
−

2λ1

3λ3

)

+
22N2y2

1

16π2

[

y2
1 v

2 −
λ1v

2

12
− 3

(

y2
1 v

2 −
λ1v

2

12

)(

ln
y2
1 v

2

µ2

)

− 3

∫ 1

0
dx

(

y2
1 v

2 −
x(1 − x)

2
λ1v

2

)

ln

(

1− x(1− x)
λ1

2y2
1

)

]

#
λ2
3 − 88N2y4

1

32π2
v2 =

ε

32π2
v2

Since v = 〈φ1〉, it has the same anomalous dimension as φ1.
Using the anomalous dimension and the β functions, one can verify
that the masses are RG invariant at 1-loop.
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Dilatation Dilation Current

Dilatation Current
The dilatation current, Dµ, is constructed from the improved
energy-moementum tensor, Θµν , of Callan, Coleman and Jackiw.

Dµ = xνΘ
µν

Θµν = −F aµλF aν
λ +

1

2
χ̄i(γµDν + γνDµ)χ+

1

2
ψ̄i(γµDν + γνDµ)ψ

+ ∂µφi∂
νφi − gµνL−

1

2
κ(∂µ∂ν − gµν∂2)φ2

i

κ is the improvement term. It is a total derivative.
The CCJ improved tensor is the one with κ = 1/3.

The improvement term does not change the charges constructed
from Θµν .

The matrix elements of Θµν is finite, thus it doesn’t get
renormalized.
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Dilatation Dilation Current

Trace Anomaly

The divergence of the dilatation current is the trace of the improved
energy-momentum tensor.
Classically Θµ

µ vanishes for theory without any dimensional couplings.
Quantum effects make Θµ

µ non-zero, this is known as trace anomaly.
For the theory under consideration

Θµ
µ = γφ1φ1∂

2φ1 + (4γφ1λ1 − βλ1)
φ4
1

24
+ . . .

Terms involving other fields are omitted.

Terms proportional to γφ1 are usually omitted.
They cancel when EOM is applied but can contribute to off-shell
matrix element and Green functions.
Also these terms are needed to make the trace RG-invariant.

Patipan Uttayarat (UCSD Physics) A Very Light Dilaton May 25, 2011 17 / 28

Friday, June 24, 2011



Dilatation Decay Constant and Mass

Dilaton State
The dilaton state, |σ〉, in the theory is identify by the following
criteria

spinless state

couple strongly to the energy-momentum tensor

lightest state

Clearly φ1 satisfy all of the above.

It is the only state whose mass start at 1-loop.

It is the only state which couples linearly to the
energy-momentum tensor when expanded about 〈φ1〉 = v ,
〈φ2〉 = 0

Thus |σ〉 can be identify with a state created by φ1.
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Dilatation Decay Constant and Mass

Decay Constanst
Define the decay constant fσ by

〈0|Θµν(x)|σ〉 =
fσ
3

(

pµpν − gµνp2
)

e ip·x

where p is the momentum state |σ〉. The form of the right hand side
is constrained by conservation of Θµν . The factor 1/3 comes from

〈0|∂µDµ|σ〉 = 〈0|Θµ
µ|σ〉 = −fσM

2
σe

ip·x

Note that Θµν = −1/3v∂µ∂νφ1 + · · · .
Thus to lowest order fσ = v + · · · .
The RG invariant expression is easy to guess

fσ = vZ
−1/2
φ1

where Zφ1 is the wavefunction renormalization factor.
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Dilatation Decay Constant and Mass

Dilaton Mass

Having determined the decay constant fσ, the mass of the dilaton can
be obtained from the trace anomaly.
To lowest order, the mass is

M2
σ =

λ2
1 + λ2

3 − 88N2y 4
1

32π2
v 2

=
ε

32π2
v 2 = M2

φ1

where λ2
1 term is dropped for consistency.

RG invariant of Mσ can be inferred from Mφ1 .

Given the vev, we can tune ε to make the dilaton light compares
to the vev.
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Phase Structure Broken/Symmetric Phase

Broken Phase
Recall the theory admits a non-trivial minimum provided

λ1 is much smaller than other couplings,

ε ≡ λ2
3 − 88N2y 4

1 ≥ 0.

We want to study symmetry breaking close to the IR fixed-point.
However, near the fixed-point these conditions are not satisfied.

Use RGE to trace back the RG trajectory to large RG time where
perturbative analysis of effective potential yields a non-trivial
minimum.

Similary can define the theory at scale µ0 where perturbative analysis
yields a non-trivial minimum. Moreover, if the vev is well below µ0,
RG flows will get closed to the fixed-point before the massive
particles decouple.
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IRFP

Region where we can
reliably find minimum
of Veff

Theory parameter space: couplings at fixed μ0

Flow towards IRFP

?
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Phase Structure Broken/Symmetric Phase

Symmetric Phase
For a point in parameter space where ε < 0

Veff (〈φ1〉) becomes positive and the non-trivial minimum
disappears,

the effective potential seems to be unbounded from below along
φ1 direction for large φ1.

The second point threatens the validity of the model.

However, at large φ1 perturbative analysis breaks down.
Can extend the range of perturbativity using the improved effective
potential which effectively re-sum large logarithms.

V imp
eff =

1

24
λ̄1(t)e

−4
∫ t′

0 γφ1dt
′

φ4
1

Here t = lnφ1/µ0. This form is valid as long as λ̄1(t) is perturbative.
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Phase Structure Broken/Symmetric Phase

Symmetric Phase (cont.)

For points in parameter space closed to the IR fixed-point, gauge
coupling drives the Yukawa coupling to 0 in the UV.
Thus in the far UV, the β-function for λ1 has a Landau pole.

The effective potential is bounded from below because
λ̄1(t) > 0 for large φ1.

The theory need a UV cutoff.
! One can view the model as being a low energy effective theory

of some UV completed models.
! Since the cutoff will be many order of magnitude above the

scale of symmetry breaking, one can (safely) ignore it.
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IRFP

Region where we can
reliably find minimum
of Veff

Theory parameter space: couplings at fixed μ0

Symmetric Phase

Broken Phase

critical surface
     Mσ =0
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Phase Structure Numerical Analysis

Numerical Value
N = 20, nf = 11/2N, δ = 0.2,
g(µ0) =

4
9g∗, y1(µ0) = 0.32y1∗, y2(µ0) =

1
5y2∗,

λ1(µ0) =
1
30λ2∗, λ2(µ0) = 3λ2∗, λ3(µ0) = 5.2λ3∗.

These condition corresponds to ε ! 0.
The vev is at

ln
〈φ1〉
µ0

# −29

and the spectrum are

Mψ,χ

v
# 8.5× 10−3,

Mφ1

v
# 7.9× 10−4,

Mφ2

v
# 9.5× 10−2.

Fractional correction to the effective potential from higher order
terms are approximated to be

∣

∣

∣

∣

Ng 2
∗

16π2
ln

(

y 2
1 v

2

µ2

)
∣

∣

∣

∣

# 0.2.
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Phase Structure Numerical Analysis

Numerical: Couplings Evolution

N = 20, nf = 11/2N, δ = 0.2,
g(µ0) =

4
9g∗, y1(µ0) = 0.45y1∗, y2(µ0) =

1
5y2∗,

λ1(µ0) =
1
30λ1∗, λ2(µ0) = 3λ2∗, λ3(µ0) = 5.2λ3∗. These condition

corresponds to ε < 0.

!400 !300 !200 !100 100

0.02

0.04

0.06

0.08

!400 !300 !200 !100 100

0.005

0.010

0.015

0.020

0.025
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Phase Structure Numerical Analysis

Numerical: Broken Phase

y1(µ0) = 0.32y1∗. This corresponds to a positive ε.

!400 !300 !200 !100 100

0.005

0.010

0.015

0.020

0.025

0.030

!80 !60 !40 !20

0.00002

0.00004

0.00006

0.00008

0.0001

The coupling λ1 becomes negative during the flow.
This agrees with our expectation from the improved effective
potential.
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Conclusion

Applications

We can use this model to verify various results in the literature. For a
specific example we will verify the dilaton potential in nearly
conformal theory of Goldberger, Grinstein and Skiba. Taking
L = LCFT +

∑

n λnOn, GGS arrives, via indirect argument, at the
dilaton potential

Veff(χ) =
M2

σ

4f 2σ
χ4

[

ln

(

χ

fσ

)

−
1

4

]

+O(γ2).

To compare our model with GGS, we view our model as
L(g) = L(g∗) + (L(g)− L(g∗)). In our model the dilaton field is
identify with φ1 and the anomalous dimensions are small.
Our effective potential for φ1 turns out to be exactly the same as
GGS.
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deviations (“deformations”) from the CFT by adding small perturbations [23, 24].

Obviously this basic setup applies to our model, and because it is fully perturbative

model one should be able to verify the validity of some general assertions. The

deviations from conformality can be small in one of two ways, either the anomalous

dimensions γn or the coefficients λn of the operators On are small. On general

grounds one can show that for |γn| ! 1 the effective potential for the field χ whose

expectation value gives rise to the dilaton is [26]

Veff(χ) =
M2

σ

4f 2
σ

χ4

[

ln

(

χ

fσ

)

−
1

4

]

+O(γ2) . (31)

The case |λn| ! 1 is more cumbersome. Only in the case that only one perturbation

is added does one obtain a parameter-free effective potential

Veff(χ) =
M2

σ

f 2
σγ

χ4

[

1

4 + γ

(

χ

fσ

)γ

−
1

4

]

+O(λ2) ,

while for more than one perturbation occur one has the less restricted

Veff(χ) =
M2

σ

f 2
σ

χ4
∑

n

{

xn

[

1

4 + γn

(

χ

fσ

)γn

−
1

4

]}

+O(λ2) ,

where the coupling constants have been traded for constants xn that are constrained

by
∑

n γnxn = 1.

Any model with a conformal fixed point g∗ can be written in the fashion of Eq. (30)

L(g) = L(g∗) + (L(g)− L(g∗))

where g are coupling constants at arbitrary values. If g is sufficiently close to g∗

one is in the case |λn| ! 1 above, while if the region of couplings that includes g

and g∗ is perturbative one expects |γn| ! 1. We need, in addition, that the model

display spontaneous breaking of scale invariance in the vicinity of the fixed point.

Our model furnished an explicit example. The analogue of χ is our field φ1. Because
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V. DISCUSSION, CONCLUSION AND OPEN QUESTIONS

We have presented a model with an IR-fixed point, and demonstrated that the

model has two phases. In phase I RG-trajectories run into the IR-fixed point (in

infinite RG-time). The scale symmetry is approximate and explicitly realized and

it becomes exact at the fixed point. In phase II scale symmetry is spontaneously

broken. Of course, scale invariance is also explicitly broken by the trace anomaly.

The trajectories don’t reach the IR-fixed point but some get very close and for those

the explicit, relative to spontaneous, breaking of scale invariance is small: A light

dilaton appears in the spectrum.

Analytic evidence for this picture was presented at length but the numerical sup-

port was scant. This is clearly an interesting direction for future work. In particular,

one could determine the actual location of the phase transition. Another direction

for future work is to find generalizations of the model. We do not know how general

this picture is or how difficult it may be to come about models that display arbitrarily

light dilatons (we were not aware of any example prior to this work).

Among new models one may try to construct some with the Standard Model of

electroweak interactions embedded in it. One could then test whether the setup

in Ref. [26] works as advertised. The authors there considered the possibility that

the standard model is embedded in an almost conformal, possibly strongly inter-

acting field theory with spontaneously broken scale invariance. In the context of

4-dimensional strongly interacting near-CFTs obtained as AdS/CFT-like duals of

5-dimensional non-factorizable geometries (RS models) one encounters often the

schematic Lagrangian describing the dynamics:

L = LCFT +
∑

n

λnOn . (30)

The first term is a CFT while the sum that follows is an attempt to capture the
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Conclusion

Applications

We can use this model to verify various results in the literature. For a
specific example we will verify the dilaton potential in nearly
conformal theory of Goldberger, Grinstein and Skiba. Taking
L = LCFT +

∑

n λnOn, GGS arrives, via indirect argument, at the
dilaton potential

Veff(χ) =
M2

σ

4f 2σ
χ4

[

ln

(

χ

fσ

)

−
1

4

]

+O(γ2).

To compare our model with GGS, we view our model as
L(g) = L(g∗) + (L(g)− L(g∗)). In our model the dilaton field is
identify with φ1 and the anomalous dimensions are small.
Our effective potential for φ1 turns out to be exactly the same as
GGS.
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it is perturbative one has |γn| ! 1. Reassuringly, when the tree level term in the

effective potential of Eq. (6) is eliminated by use of Eq. (7), and the expressions for

dilaton mass and decay constant in Eq. (27) the resulting potential is exactly of the

form of Eq. (31). To emphasize, the dependence on the many coupling constants of

our model is completely contained now in only two parameters: Mσ and fσ.

Finally, we address one of the central questions we set out to investigate: Is the

AB estimate of the dilaton mass in walking technicolor scenarios correct? For AB,

the dilaton mass is given by

M2
σ "

s(α∗ − αc)

αc
Λ2 "

N c
f −Nf

N c
f

Λ2, (32)

where α∗ is the coupling at the fixed point, Nf is the number of flavors and Λ is

the scale of chiral symmetry breaking which occurs only if the critical coupling αc is

below the fixed point, αc < α∗, which in turn corresponds to the number of flavors

below a critical value, N c
f . The middle expression in Eq. (32), relating the mass to

the distance between the critical coupling and the fixed-point, does not carry over

to our model. In our case, the role of the critical value of the coupling constant αc is

played by a critical surface, ε = 0, separating the symmetric and broken phases. But

the mass of the dilaton is not proportional to the distance between this surface and

the fixed point (however one defines distance): the fixed-point lies on the critical

surface and the dilaton mass vanishes everywhere on the surface. The rightmost

expression in Eq. (32), however, has a counterpart in our model. In that formula

(N c
f −Nf )/N c

f measures how far the theory is from the critical point. In our model

ε plays the role of this quantity. It measures how far the theory is from the critical

surface. Moreover, both (N c
f −Nf )/N c

f and ε can be made arbitrarily small which in

turn make the dilaton arbitrarily light compared to the scale of symmetry breaking.

To the extent that one can arrange for arbitrarily small (N c
f−Nf )/N c

f , AB’s estimate

of a parametrically small dilaton mass is consistent with our analysis.
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Intorduction

(Approximate) Scale Invariant Theory

A schematic β function of the theory.
The coupling flow toward the “would
be” IR fixed-point, g∗.
Close to the fixed-point, the flow is
slow and the theory posses approxi-
mate scale symmetry.

β(g)

gg∗

If the RG-trajectory reaches g∗, scale invariance becomes exact.

However, some degree of freedom in the theory can get a vev. If this
happens close to the fixed-point, scale invariance is spontaneously
broken and one expect a dilaton in the spectrum.

A field theory with this behavior is not common!

Patipan Uttayarat (UCSD Physics) A Very Light Dilaton May 25, 2011 5 / 28

Dilaton in WTC?
 
AB say:

First equation: In our model the critical coupling is a critical surface,
the IRFP is on critical surface, 0=0, correct but not interesting and
not what is intended

Second equation: ( Nc - N ) / N plays role of ε, measures distance to
critical surface, and equation is qualitatively correct!
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Conclusion

Summary

We construct a perturbative model which a non-trivial IR fixed
point.

There are two distinct phases in our model:
! Symmetric phase: the flow reaches the fixed point (in infinite

RG time.)
! Broken phase: the vev is dynamically generated. this phase

somewhat mimics the behavior of walking technicolor.

The broken phase can be used to study the dilaton:
! The mass of the dilaton can be made arbitrary light compared

to the vev by tuning the parameter ε = λ2
3 − 88N2y41 .

The model can be used to verify results/conjectures in literature
which are obtained via indirect argument.
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