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What is a Dilaton?

A Nambu-Goldstone boson of a spont. broken scale (dilatation)
symmetry.

If scale symmetry is only approximate, we get a pseudo NGB instead,
also called dilaton.

Why would one be interested in light dilaton?

@ It can serve as a scalar analog of the graviton.

@ If SM is embedded in a CFT, a dilaton could have similar
properties as the Higgs.

@ It can serve as a force mediator between dark matter and normal
matter.

@ If the dilaton is sufficiently decoupled, can serve as a dark
matter candidate.
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Review of Scale Symmetry

Scale transformation takes

X — e%x
P(x) = " (e“x)

Classical: theory without dimensional parameters is scale invariant.
Quantum: scale invariance is broken by renormalization effect.

Scale invariance is recovered if there is a (non-trivial) fixed point.

Along RG trajectory close to the fixed point, one usually has
approximate scale invariance.
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Coupling runs from UV fixed point (origin) to IR fixed point
(which it reaches in exponential RG-time).
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(Approximate) Scale Invariant Theory

A schematic 8 function of the theory. o)

The coupling flow toward the “would
be" IR fixed-point, g..
Close to the fixed-point, the flow is o
slow and the theory posses approxi-
mate scale symmetry.

If the RG-trajectory reaches g, scale invariance becomes exact.

However, some degree of freedom in the theory can get a vev. If this
nappens close to the fixed-point, scale invariance is spontaneously
broken and one expect a dilaton in the spectrum.

A field theory with this behavior is not common!
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(Approximate) Scale Invariant Theory (cont.)

Walking Technicolor has been one of the widely studied theories of
this type.

In this framework, the fixed-point is strongly interacting. As a result,
fermion condensate is formed and scale invariance is broken.

But a strong interacting nature of the model makes it difficult to
analyze analytically.

In particular, the existence of a light dilaton in WTC is not clear and
IS a subject of a recent debate:

@ Yes

@ No

Having a perturbative toy model with the above properties — an
interacting fixed-point and an approximate scale invariance which is
broken dynamically, would help us study such a question.
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Walking Technicolor in Pictures

First, review QCD:

2 |
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The quark mass:

hidden
dependence
o(1) on A/M (/)
Cp) A C(M), ~ / \C(A) 5 /
Lunass = 3,2 1QQ) (W) G0 = = 75~ (QQ)(M) aa = = 5 (QQ)(A) ag

e ————

(M) **—_| The central observation: large |

| coupling gives large anomalous
dimension

It is argued that y. =1
Hence
- o(M) - . A2
Emass — MA <QQ> (A) q4q = mg ~ C(M)M

Bonus: in non-minimal TC this also raises the mass of pseudo-goldstone bosons:

If 70Q)GQ) = 27Qq) ~ 2 then (QQ)(QQ)has dimension 4 (marginal operator).
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(Approximate) Scale Invariant Theory (cont.)

Walking Technicolor has been one of the widely studied theories of
this type.

In this framework, the fixed-point is strongly interacting. As a result,
fermion condensate is formed and scale invariance is broken.

But a strong interacting nature of the model makes it difficult to
analyze analytically.

In particular, the existence of a light dilaton in WTC is not clear and
IS a subject of a recent debate:

@ Yes Small beta-function

@ No Anomaly: like eta’

Having a perturbative toy model with the above properties — an
interacting fixed-point and an approximate scale invariance which is
broken dynamically, would help us study such a question.
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Why is it non-straightforward?

® SSB in CFT? How? Take, e.g., 7=4 SUSY SU(N)
Flat directions. Expand about point away from origin.
SU(N) -> SU(N-k) x SU(k) x U(1). But 77=4 SUSY unbroken.
“Dilaton” is exactly massless and corresponds to radial
direction along flat directions. There already, not a real dilaton
(does not appear as dilaton in low energy effective theory).

® Better try: Coleman-Weinberg abelian-higgs model.
Fine tune mass to zero, scale invariance classically.
Effective potential develops a minimum away from origin.
Gauge and scale symmetries spontaneously broken.
Gauge field acquires mass.
But would-be-dilaton acquires mass too: trace anomaly
spoils scaling symmetry.

M(dilaton)/M(vector) ~ e%/16m2

e Want: arbitrarily light dilaton without turning off interactions
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The Model

SU(N) gauge theory with n;, = n, fundamental fermions ¢ and x
and two scalar singlets ¢; and ¢,.

EI . 1 1
L = —%TI’ F/WFM,/ + le (Wlmwj -+ )_(Jl'm)(j) -+ 5(8M§b1)2 -+ 5(6’M¢2)2
— ¥ (W + >_<X) b1 — y2(Ux + XU) b2
1 1

1
- ﬂ)‘lgbéf - ﬂ)\zﬁbg - Z)\ﬂﬁ?bg

This theory is invariant under discrete Z, as well as SU(n,,) symmetry

lea@béﬁblﬂ? w%uw

and
P2, X = —P2, —X x — Ux
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Notate bene:

Masses set to zero (I am not solving the hierarchy problem).
This is precisely as with Coleman and Weinberg.
You can set them to zero and use dimensional regularization.

Theory has Landau pole. This is a UV issue. We study
the IT properties of the model. We can take it to be a cut-off theory.

This is not the theory of everything.
It is a Toy Model that displays some behavior that mimics WTC
and may answer some questions.



MS 3 Functions
For large N with n, = 11N/4 (1 — /11), the leading terms are

0g ON 5 25N? g°

(167° )9t = 38 T3 Tom

(167 )aa); = 4y, ys + 11IN?y? — 3Ng?y,
(16722 = 352y, + 11Ny — 3Ngy,

(167 )aail = 3] + 3A\3 + 44N Ay — 264Ny
(167 )aa? — 3)2 + 372 + 44N2)\,y2 — 264N2y;
(167 )aa: = A3+ dodz + 4)2

+ 22N A3y2 4 22N2 \sy? — 264N2y2y2
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Fixed-point

To get a fixed-point for the gauge coupling, need to balance a 1-loop
against a 2-loop.

This is possible because for large N, o can be made small by a
carefully chosen n,.

The fixed-point to leading order in 1/N is

2 0
2 2
— 1672 ——
& = T 5N
3 g°
2 2: *
18g2 2
1 2 3 11 N V4
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Effective Potential

At tree-level, (¢;) = 0 and all the particle are massless. The theory
flows to the IR fixed-point.

However, quantum effect could drastically change the structure of the
vacuum

Vo(o) Verp(o)

/
¢ ¢

The non-trivial vev gives mass to both fermions and scalars and alters
the RG trajectory.
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Effective Potential (cont.)

The effective potential in MS is

Veff:—24)\1¢1 24>\2¢2 >\3¢%¢§
11N2Mﬁ+< M2, 3) 11N2M§*< M2 3)

(6472) N3z "3 (6472) 2

22 2 "2 2
QoMb M2 3\ ME (M3
(6472) w2 (6472) 2u? 2

Mer = y101 £ Y202,

(A1 4+ A3)pf + (A2 + A3) 3
4

2
MS:|:_

N VAL = X3)20% + (M2 — A3)205 — 2(A1 A2 — A3 — Az — TA3) 263

4
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Effective Potential (cont.)

Minimizing the potential analytically is difficult. But easy to identify
some local minima. Focus on minimum which preserves discrete Z,

The potential reduces to

(Mo1)? (Mot 3N | (As91)” [ Az 3

Verr = —qbl In S R In >

25672 2u°2 2 25672 2u° 2

_ 22Nyt [ yidr 3
6472 (12 2

The extremum, 9/0¢1 Vegs({(¢1)) = 0, is at
MM M) N A5 () Asl0)®
6 6472 2147 6472 2142
B 88Ny, (In yi{¢1)® B 1)

6472 (12
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Vacuum Expectation

A1 can be traded with (¢;) as a free parameter. For consistency,

18\12 In q;” <& 1. Stability of the vev is determined from the

eigenvalues of second derivative matrix

0? A2 — 88N2y
067 ((¢1),0) = = 392 = (¢1)°
82

557 Ve (92),0) = 3 {62)* + O(1-loop)

Evaluate Vg at (¢1) yields

A2 — 88N2y*
Ver( (1)) = =254 ()

Thus when ¢ = A3 — 88N?y} > 0, there is a non-trivial minimum.

Friday, June 24, 2011



Role of ¢,

Note that ¢, never entered into any calculation.
Moreover, one can get an attractive IR fixed-point with just one

scalar singlet. This raise the question, what is the purpose of the
second singlet?
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Role of ¢

Note that ¢, never entered into any calculation.
Moreover, one can get an attractive IR fixed-point with just one

scalar singlet. This raise the question, what is the purpose of the
second singlet?
@ It allows us to introduce more couplings, in particular the
cross-coupling As.
@ Without the second singlet, the extremum found by perturbative
analysis would have been the maximum.

» The scalar potential appears to be unbounded from below.
» Possible to have non-trivial minimum at higher scale which is

inaccessible to perturbative analysis.
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Pole mass in Broken Phase
The explicit 1-loop pole masses are

2

g= N y2v?
M¢(“):MX(M):Y1V[1—167T2§<3|n L —4>]

14
Mq% : A1 V2 N 3)\%v2 " A1 V2 B 5 N 27 N 3)\§v2 " A3 V2 B 1 B 2_>\1
! 2 6472 22 3 34/3 6472 2u? 3 3)3
22N?y? 2

+

A1 V2 A1 V2 V2
2 2 1 2 2 1 Y1
1672 P17 T 12 _3<y1‘/ - 12)('” /ﬂ)

- 3/01dx <y12v2 - X(12_X))\1v2) In <1 — x(1 —x);7112> }

-~ A3 _88N2)/f‘/2 _ &

30772 — 30727

Since v = (¢1), it has the same anomalous dimension as ¢.
Using the anomalous dimension and the 3 functions, one can verify
that the masses are RG invariant at 1-loop.
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Dilatation Current

The dilatation current, D#, is constructed from the improved
energy-moementum tensor, ©#”, of Callan, Coleman and Jackiw.

DF = x, @1

1_ 1 -
O = —F¥ 4 “Xi(y"D¥ + 7" D) + S $i(y*D" + " D"}y
1
+ 0906, — gL — SR(0"0 — 6" )}

k Is the improvement term. It is a total derivative.
The CCJ improved tensor is the one with Kk = 1/3.

@ The improvement term does not change the charges constructed
from ©H",

@ The matrix elements of ©"” is finite, thus it doesn’'t get
renormalized.
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Trace Anomaly

The divergence of the dilatation current is the trace of the improved
energy-momentum tensor.

Classically ©f vanishes for theory without any dimensional couplings.
Quantum effects make ©/ non-zero, this is known as trace anomaly.
For the theory under consideration

4
0% = 1101 + (40 — ) Sk +

Terms involving other fields are omitted.

Terms proportional to vy,, are usually omitted.

They cancel when EOM is applied but can contribute to off-shell
matrix element and Green functions.

Also these terms are needed to make the trace RG-invariant.
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Dilaton State

The dilaton state, |o), in the theory is identify by the following
criteria

@ spinless state
@ couple strongly to the energy-momentum tensor
@ lightest state

Clearly ¢4 satisfy all of the above.

@ It is the only state whose mass start at 1-loop.

@ It is the only state which couples linearly to the
energy-momentum tensor when expanded about (¢;) = v,

(¢2) =0
Thus |o) can be identify with a state created by ¢;.
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Decay Constanst
Define the decay constant £, by

010" (o) = = (pp* — g"p?) "

where p is the momentum state |o). The form of the right hand side
is constrained by conservation of ©*”. The factor 1/3 comes from

0|0, D*|o) = (0|@*|c) = —Ff, M?e'P>
7 u o

Note that ©* = —1/3vo* 0" ¢1 +
Thus to lowest order f, = v + - - -
The RG invariant expression is easy to guess

_ 712
f, = VZ¢1

where Z,, is the wavefunction renormalization factor.
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Dilaton Mass

Having determined the decay constant f,, the mass of the dilaton can
be obtained from the trace anomaly.
To lowest order, the mass is

M2

where \? term is dropped for consistency.
RG invariant of M, can be inferred from My, .

@ Given the vev, we can tune £ to make the dilaton light compares
to the vev.
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Broken Phase

Recall the theory admits a non-trivial minimum provided

@ Ay Is much smaller than other couplings,
@ ¢ = )5 —88N?%y} > 0.

We want to study symmetry breaking close to the IR fixed-point.
However, near the fixed-point these conditions are not satisfied.

Use RGE to trace back the RG trajectory to large RG time where

perturbative analysis of effective potential yields a non-trivial
minimum.

Similary can define the theory at scale jo where perturbative analysis
yields a non-trivial minimum. Moreover, if the vev is well below i,
RG flows will get closed to the fixed-point before the massive
particles decouple.
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Theory parameter space: couplings at fixed o

¥ IRFP

Flow towards IRFP

Region where we can
reliably find minimum
of Vet
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Symmetric Phase

For a point in parameter space where ¢ < 0

@ Vr({¢p1)) becomes positive and the non-trivial minimum
disappears,

@ the effective potential seems to be unbounded from below along
@1 direction for large ¢.

The second point threatens the validity of the model.

However, at large ¢, perturbative analysis breaks down.
Can extend the range of perturbativity using the improved effective
potential which effectively re-sum large logarithms.

: ]. - t/ /
Ver® = S h(t)e "o et g

Here t = In ¢1/to. This form is valid as long as A\1(t) is perturbative.
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Symmetric Phase (cont.)

For points in parameter space closed to the IR fixed-point, gauge
coupling drives the Yukawa coupling to 0 in the UV.
Thus in the far UV, the S-function for A\; has a Landau pole.

@ The effective potential is bounded from below because
A1(t) > 0 for large ¢;.
@ The theory need a UV cutoff.

» One can view the model as being a low energy effective theory
of some UV completed models.

» Since the cutoff will be many order of magnitude above the
scale of symmetry breaking, one can (safely) ignore it.
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Theory parameter space: couplings at fixed o

crl't.ical surface
) Mo =O

Symmetric Phase I-RFP

Broken Phase

Region where we can
reliably find minimum
of Vet
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Numerical Value
N = 20, nf_11/2N §=02
g(:uO) gg*1 .y]-(/'I/O) = 0. 32_)/1*1 )/2(,&0) 5)/2*,

A1 (10) = 35 26, A2(i0) = 3A2e, As(p0) = 5.2Xs,.
These condltlon corresponds to € 2 0.

The vev is at

00
Ho
and the spectrum are
M
PX 85 %1073, —2~79x1074 —2~95x 1072
% % %

Fractional correction to the effective potential from higher order
terms are approximated to be

N
8. In yiv ~ 0.2.
1672 (12
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Numerical: Couplings Evolution

N =20, nf=11/2N, § = 0.2,

g(to) = 58 y1(10) = 0.45y1., y2(110) = £¥2e,
)\1(,LLO) = %)\1*, )\2(#0) = 3)\2*, )\3(,LLO) = 52)\3* These condition

corresponds to € < 0.
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Numerical: Broken Phase

v1(0) = 0.32y1,. This corresponds to a positive ¢.

0.030 |-
0.025 -
0.020 | I
- 0.00006 |-
0.015 - -
: 0.00004 |-
0.010- I
0.005 0.00002 -
— 7/ L
\\\\\\\\\\\\\ | ) I . | L L L ! T I | | | | |
~400 ~300 ~200 ~100 100 ~80 =60 —40 ~20

The coupling A\; becomes negative during the flow.
This agrees with our expectation from the improved effective
potential.
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Applications

We can use this model to verify various results in the literature. For a
specific example we will verify the dilaton potential in nearly
conformal theory (Goldberger, BG, Skiba) . Taking

L= Lcrr + Y., AnO,, GGS arrives, via indirect argument, at the
dilaton potential

M? 1
Verr(x) = 4—fZX4 [ln (%) — Z] +O(7%).
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| < 1

] <1
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Applications

We can use this model to verify various results in the literature. For a
specific example we will verify the dilaton potential in nearly
conformal theory (Goldberger, BG, Skiba) . Taking

L= Lcrr + Y., AnO,, GGS arrives, via indirect argument, at the
dilaton potential

M? 1
Veff(X) — 4—](02)(4 [ln (%) — Z] + O(’}/z)

To compare our model with GGS, we view our model as
L(g)=L(g.)+ (L(g)— L(g:)). In our model the dilaton field is
identify with ¢; and the anomalous dimensions are small.

Our effective potential for ¢; turns out to be exactly the same as
GGS.
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Dilaton in WTC?

AB say: S(Oz* _ Oéc)

First equation: In our model the critical coupling is a critical surface,
the IRFP is on critical surface, 0=0, correct but not interesting and
not what is intended

Second equation: ( N¢- N) /N plays role of ¢, measures distance to
critical surface, and equation is qualitatively correct!
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Summary

@ We construct a perturbative model which a non-trivial IR fixed
point.
@ T here are two distinct phases in our model:

» Symmetric phase: the flow reaches the fixed point (in infinite
RG time.)

» Broken phase: the vev is dynamically generated. this phase
somewhat mimics the behavior of walking technicolor.

@ The broken phase can be used to study the dilaton:

» The mass of the dilaton can be made arbitrary small compared
to the vev by tuning the parameter ¢ = )\:23 — 88N2yf.

@ The model can be used to verify results/conjectures in literature
which are obtained via indirect argument.
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