

Trigger proposal

Igor Pains with Giovanni Mazzitelli and Rafael Nóbrega Joining the group:

Gabrihel Silva and Jordan Venâncio

19/10/2023 Analysis & reconstruction meeting

1. Introduction

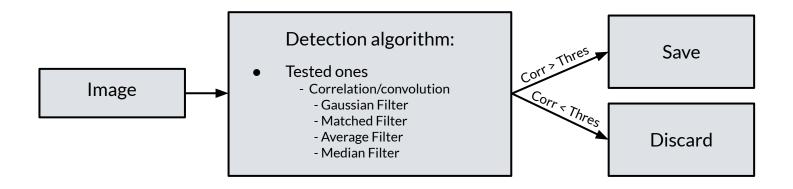
Introduction

- Motivation: reduce data to manageable levels by selecting only events of interest, saving storage and processing resources.
 - Each run may need up to 2 Gb to be stored after the compression.
 - ~1 Tb per day considering the current frequency.

Proposal

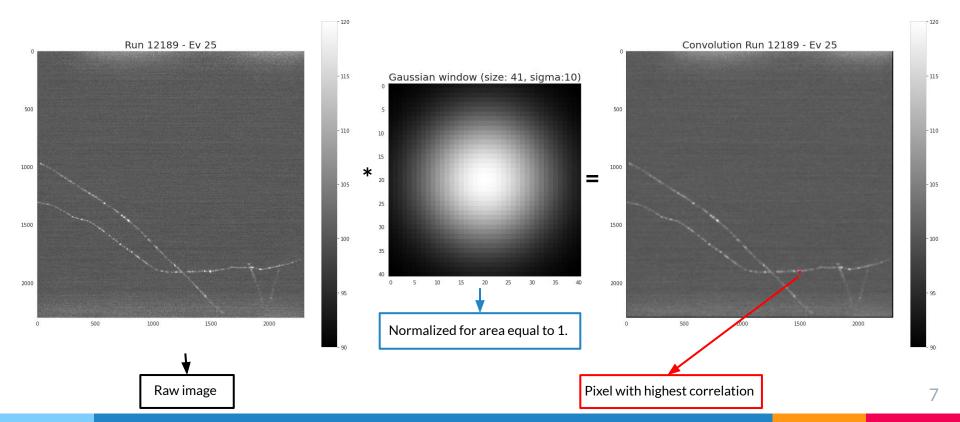
- Develop algorithms to be tested as online trigger to decide whether to save or not images taken by the detector.
- $on going \rightarrow \circ$ Convolution of the image with several kernels: look for high correlation points. <u>Link of the last presentation</u>
 - Explore Machine Learning methods

Methodology



- A large set of parameters was used during the training for each filter (window size and sigma if needed)
- > The filters had a slightly better performance using pedestal subtraction method.
- ▶ The best filter was the Gaussian with window size equal to 19 and sigma 5.5
 - \circ ~ close to what could be achieved by fitting the data with a 2D gaussian function

Correlation/Convolution



Datasets

Datasets

- Training:
 - Noise dataset: 300 images from pedestal runs (Run 2 underground).
 - ER signal simulation: 300 images containing 0.5 keV signals added to pedestal runs.

• Test (reconstruction was also used for comparison):

- Noise dataset: 300 images (different from training dataset)
- ER signal simulation: 300 images containing 0.5 keV signals added to real pedestal runs.

not shown in this presentation

- NRAD run: 405 images (run 12189)
 - NR simulation: 219 images containing NR simulated signals added to pedestal runs.

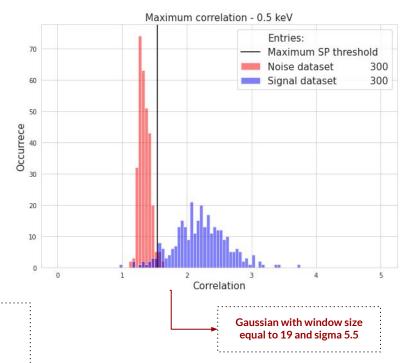
We need low energy Nuclear Recoils

Training (scanning methods and their parameters)

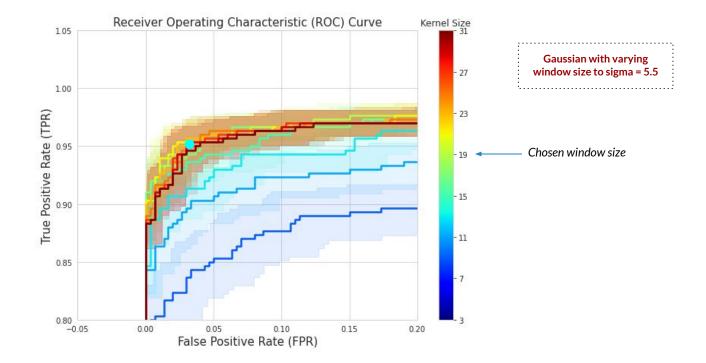
- The convolution was performed and the highest correlation was stored for each dataset.
- A threshold that best separates the two datasets was chosen (using the SP metric).

$$SP = \sqrt{\sqrt{DET_{sig}DET_{noise}}} \left(\frac{DET_{sig} + DET_{noise}}{2}\right)$$

 DET_{sig} : (95.3±2.0)% (Percentage of signal elements above threshold) DET_{noise} : (97.7±1.4)% (Percentage of noise elements below threshold) SP: (96.5±1.7)%

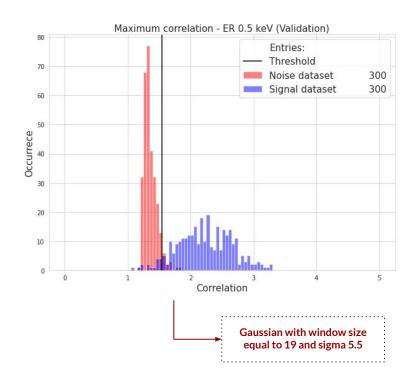


Point of Operation



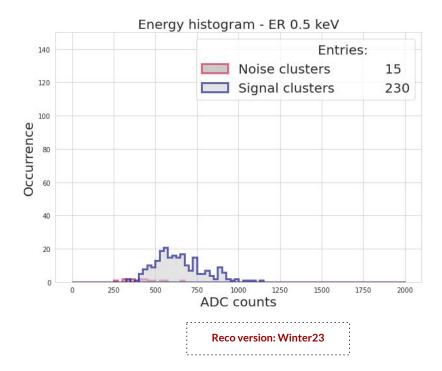
Validation

- The threshold of the training was used on the validation dataset:
 - DET_{sig}: (94.7±2.1)%
 - DET_{noise}: (95.7±1.9)%
 - SP: (95.2±2.0)%



Reco file (ER 0.5 keV)

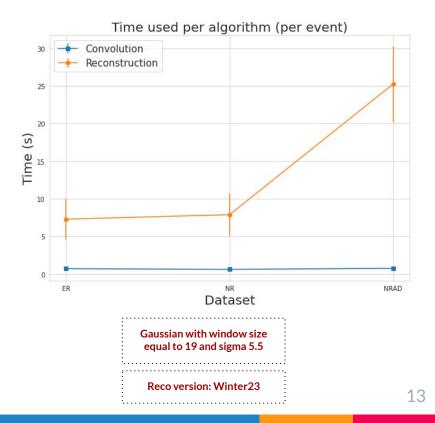
- The reconstruction was used on the signal test dataset (cuts were applied on the borders due to the noise)
- The position of the clusters was compared with the truth information to check which clusters were actually signal.
 - DET_{sig}: (76.7±4.0)%



Time analysis

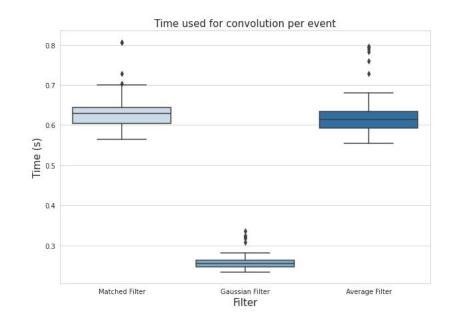
- The convolution method needs in average 0.7 seconds per image (using fft and ifft method).
 - Invariant to image occupancy

The reconstruction code may need up to 25 seconds per image (depends on the occupancy of the image).



Time analysis

- The Gaussian Filter can be applied with less than 0.3 seconds using a dedicated function (that takes advantage of the symmetric nature of the mask).
- All the times were measured on the cloud (not using the condor queue).



Conclusions and next steps

- In the chosen operation point (SP based):
 - \circ ~95% of noise rejection and
 - ~95% of signal detection efficiency
- Processing time smaller than 1 second (independent of the number of tracks present on the image)
- New masks will be tested to improve the method
 - Invariant correlation to position and rotation (see <u>paper</u>)
 - Other Machine Learning approaches will be implemented