PMT Simulation sim/data analysis introduction

Presented by: Luan Gomes

Universidade Federal de Juiz de Fora (UFJF)
with Davide Pinci (INFN-Roma I), Mariana Migliorini and Rafael A. Nóbrega (UFJF)

March 4, 2024
anjf

Summary

In this presentation:

1. Introduction
2. Strategy for the analysis
3. Preliminary results from simulation analysis

Introduction

Remembering the recent results...

Signal width in function of the Z distance from GEM

Introduction

Remembering the recent results...

Problem in simulated waveform height peak and shape
Simulation
Real data

Introduction

Remembering the recent results...

PMT QE and glass transmission spectrum

$$
\frac{\text { Area }_{\text {green_curve }}}{\text { Area } a_{\text {black_curve }}}=1.36 \%
$$

1.36\% of produced photons by the GEMs will
have the possibility of hitting the PMTs and generating a signal

Multiply the number of produced photons by this value before simulating the PMT

Introduction

To do tasks:

- Simulation parameters tuning
- Fix simulated waveform shape
- Fix simulated waveform height peak
- Improve photon by photon propagation time
- Code optimization in general
- Add missing parameters
- Analysis

Check the quality of the current simulation
O Simulation/data comparison

- Simulation for different tracks with different energies

Introduction

Positions of the PMTs

Simulation code

Reconstruction code

Strategy

Points to consider in this analysis:

- Consider the $X-Y-Z$ position of the tracks
- Associate channels with PMTs
- Simulate 6 keV spots

Parameters to be verified:

- Peak
- Integral
- RMS

Strategy

For this analysis:

- Based on runs of Fe55 source
- Selected just events with one cluster
- Use PMT + camera reco for data analysis

Waveform
Image

- 12170: Step $1=5.0 \mathrm{~cm}$
- 12245: Step $1+6$ divisions $=11.0 \mathrm{~cm}$
- 12171: Step $2=15.1 \mathrm{~cm}$
- 12246: Step $2+6$ divisions $=21.1 \mathrm{~cm}$
- 12172: Step $3=25.1 \mathrm{~cm}$
- 12173: Step $4=35.1 \mathrm{~cm}$
- 12174: Step $5=46.6 \mathrm{~cm}$

Fe55 runs

Strategy

Example of sim/data comparison for one event:

Strategy

Example of sim/data comparison for one event:

Simulate the 6 keV spot at the same position
Get data from waveforms analysis

Strategy

Example of sim/data comparison for one event:

- Do the sim/data comparison for the event
- Repeat the process for all one cluster events

One cluster events:
Run 12170: Step 1: [11, 23, 27, 49, 50, 63, 94, 103, 148, 188, 200, 204, 228, 283, 345, 356, 375, 386, 397]
Run 12245: Step 1 + 6 divisions: [$53,68,99,122,125,183,188,212,254,288,298,307,333,400]$
Run 12171: Step 2: [15, 34, 47, 63, 104, 119, 154, 194, 197, 204, 235, 251, 265, 276, 277, 287, 298, 334]
Run 12246: Step $2+6$ divisions: [$33,215,274,318,326,362,397]$
Run 12172: Step 3: [87, 89, 103, 125, 135, 168, 193, 211, 241, 244, 251, 257, 288, 323, 342, 357, 366]
Run 12173: Step 4: [13, 25, 68, 93, 154, 156, 168, 177, 178, 186, 194, 203, 224, 247, 252, 262, 266, 268, 303, 394]
Run 12174: Step 5: [42, 51, 53, 63, 103, 112, 141, 237, 265, 272, 306, 328, 332, 334, 335, 339, 357, 366, 383, 388]

Preliminary results from simulation analysis

Results for PMT 1

```
Z = 50 mm
```

Performing a $x-y$ position scan

Integral for $Z=50 \mathrm{~mm}$

RMS for $Z=50 \mathrm{~mm}$

Preliminary results from simulation analysis

Results for PMT 1

$Z=110 \mathrm{~mm}$
Performing a $x-y$ position scan

Peak for $Z=110 \mathrm{~mm}$

Integral for $Z=110 \mathrm{~mm}$

RMS for $Z=110 \mathrm{~mm}$

Preliminary results from simulation analysis

Results for PMT 1

$Z=151 \mathrm{~mm}$
Performing a $x-y$ position scan

Peak for $Z=151 \mathrm{~mm}$

Integral for $Z=151 \mathrm{~mm}$

RMS for $Z=151 \mathrm{~mm}$

Preliminary results from simulation analysis

Results for PMT 1

$Z=211 \mathrm{~mm}$
Performing a $x-y$ position scan

Peak for $Z=211 \mathrm{~mm}$

Integral for $Z=211 \mathrm{~mm}$

RMS for $Z=211 \mathrm{~mm}$

Preliminary results from simulation analysis

Results for PMT 1

$Z=251 \mathrm{~mm}$
Performing a $x-y$ position scan

Peak for $Z=251 \mathrm{~mm}$

Integral for $Z=251 \mathrm{~mm}$

RMS for $Z=251 \mathrm{~mm}$

Preliminary results from simulation analysis

Results for PMT 1

$Z=351 \mathrm{~mm}$
Performing a $x-y$ position scan

Peak for $Z=351 \mathrm{~mm}$

Integral for $Z=351 \mathrm{~mm}$

RMS for $Z=351 \mathrm{~mm}$

Preliminary results from simulation analysis

Results for PMT 1

$Z=466 \mathrm{~mm}$
Performing a $x-y$ position scan

Peak for $Z=466 \mathrm{~mm}$

Integral for $Z=466 \mathrm{~mm}$

RMS for $Z=466 \mathrm{~mm}$

Preliminary results from simulation analysis

Results in function of the R distance (spot at GEM plane to PMT)

Preliminary results from simulation analysis

Results in function of the R distance (spot at GEM plane to PMT) - PMT 1

Preliminary results from simulation analysis

Results in function of the R distance (spot at GEM plane to PMT) - PMT 1

Fitting the data...

Conclusions

- The height peaks of the simulated waveforms are now very similar to the real data

Next steps

- Finish the analysis
- Camera + PMT reco codes
- To do tasks

