

Decay properties of ²²Ne + α resonances and their impact on s-process nucleosynthesis

Shuya Ota National Nuclear Data Center, Brookhaven National Laboratory

2024/2/22 – DNP 2023, Hawaii, HI

Two experiments, Three papers from Texas A&M cyclotron

Resonance study related to this work

TIARA Si + HPGe + MDM at TAMU

²⁶Mg Ex spectrum comparisons from other ²²Ne(⁶Li,d) experiments

 $\Gamma_n/\Gamma_\gamma = 1.14$ (26) for Ex=11.32 MeV resonance

dσ/dΩ for (⁶Li,dγ) and (⁶Li,dn) \rightarrow S_α, Γ_n/Γ_γ , and J^π

- Peaks observed in our experiments were commonly observed by other (⁶Li,d) at similar intensities.

- Multi-Gaussian fitting was tested, assuming various situations (e.g., no Ex=11.17 MeV). But the Γ_n/Γ_γ converges within 1.14 (26).

- If Γ_n/Γ_γ = 140/35 = 4.0, N_{11.32} for (⁶Li,d γ) must be ¹/₄ smaller or N_{11.32} for (⁶Li,dn) must be x4 larger \rightarrow Unrealistic.

- $N_{11.32}$ for (⁶Li,d γ) can only increase (not decrease!) by excluding Ex=11.17

- $N_{11.32}$ for (⁶Li,dn) could increase, but not like x3-4!.

TIARA experiment at TAMU (2016 Dec for two weeks)

Barrel

MDM spectrometer [Multipole-Dipole-Multipole]

Ex=11.17 MeV resonance can be high *L* that does not contribute (α,n)

MDM focal-plane detector

Oxford Ionization chamber (isobutane 35 torr)

 μ -Megas highly amplifies signals and gives advantage in PID

Benchmarking with $^{22}Ne(d,p\gamma)$

Obtained J^π, S reproduce literature

50 60 θ_{c.m.}(deg)

5

5

3

²²Ne(⁶Li,d)

Some details (looking back...)

E_x-E_γ plot for ²²Ne(⁶Li,d)

Energy (keV) S_n=11.09 MeV Gamma-ray Energy (keV) ²⁵Mg ²⁶Mg 26Mg Ex (MeV)

 $0^+ \rightarrow 1^+ \rightarrow 0^+$

TIARA DAQ (analog...thus slow) NIM + VME; master triggered by Si. coincidence by TAC

Sensitivity of Galactic Chemical Evolution (GCE) to ²²Ne + α reactions

M=1 to 25 M_{\odot}, using GCE models by OMEGA (NuGrid collaboration) [particularly more focused on massive stars (>8 M_{\odot})]

GCE parameters used

19

Summary

- ²²Ne(⁶Li,d) experiments were performed at 7 MeV/u and Sub-Coulomb barrier energy with MDM spectrograph at TAMU.

- Ex=11.32 MeV resonance strength could be much weaker than the formerly believed strength, which has a critical impact on s-process stellar abundances.

- The reduced strength is primarily because of the reduced branching ratio Γ_n/Γ_γ =1.14 (26) from 3-4. If this disagrees with direct measurements, the populated resonance by α -transfer may be different

- Ex=11.17 MeV resonance is likely negligible
- Ex=11.12 MeV resonance is negligible as well
- From GCE's point of view, we confirmed the current ²²Ne(α ,n) rate's uncertainties have a large impact \rightarrow LUNA & Notre Dame new data are exciting.

Thank you!

Table 3

Resonance properties adopted for the Monte Carlo rate calculations.

E _x (MeV)	Jπ	Γ_n/Γ_γ	Γ_{α} (eV)		
10.8226(30) ^a	2 ^{+ a}	0	$2.1 \pm 0.3(\text{stat}) \pm 0.4(\text{sys}) \times 10^{-22 \text{d},\text{g}}$		
10.9491(8) ^a	1 ^{- a}	0	$3.0 \pm 0.3(\text{stat})^{+0.8}_{-0.6}(\text{sys}) \times 10^{-14}$ d,g		
11.0809(40) ^a	2 ^{+ a}	0	$5.7 \pm 0.7(\text{stat})^{+1.4}_{-1.2}(\text{sys}) \times 10^{-11}$ d,g		
11.112(6) ^b	2 ^{+b}	1530(67) ^{b,e}	$< 2.2 \times 10^{-10}$ f		
11.163(2) ^b	2 ^{+b}	1896(137) ^{b,e}	$< 1.3 \times 10^{-11}$ d,h		
11.169(1) ^b	3 ^{-b}	588(36) ^{b,e}	$< 1.3 \times 10^{-11}$ d,h		
11.171(1) ^b	2 ^{+b}	0.2–6 ^b	$< 1.3 \times 10^{-11}$ d,h		
11.3195(25) ^c	0^{+d}	1.14(26) ^f	$7.9(13) \times 10^{-5f}$		
>11.32	Resonance strengths and energies adopted from Ref. [12] for (α, n) and Ref. [13] for (α, γ) .				

^a Adopted from Ref. [43].

^b Adopted from Ref. [21].

^c Adopted from Ref. [14].

^d Adopted from Ref. [42].

^e Treated as negligible in the (α, γ) rate calculation.

^f Adopted from the present work.

^g A common (correlated) systematic uncertainty of $^{+25\%}_{-21\%}$ has been generated for each of these resonances.

^h See text for a detailed explanation.

TABLE I. Obtained spectroscopic factors for some low-lying states of ²³Ne observed in ²²Ne(d, p) reaction, compared with values from past measurements.

E_x (keV)	J^{π}	S (present)	S (Ref. [59])	S (Ref. [58])
GS	5/2+	0.25(5)	0.22	0.24
1016	$1/2^{+}$	0.58(12)	0.70	0.40
2315	5/2+	0.022(5)	0.05(1)	0.07