

ALMA MATER STUDIORUM Università di Bologna

Neutron spectroscopy of 26 Mg states: Constraining the stellar neutron source 22 Ne(α ,n) 25 Mg

Cristian Massimi

Department of Physics and Astronomy

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Neutron spectroscopy of ²⁶Mg states: Constraining the stellar neutron source ²²Ne(α,n)²⁵Mg

and ²²Ne(α , γ)²⁶Mg ... and ²⁵Mg(n, γ)

Cristian Massimi

Department of Physics and Astronomy

Outline

Motivations

> TOF measurements

- ²⁵Mg(n,γ) @ n_TOF
- o ²⁵Mg(n,tot) @ GELINA

➢ Results

➢ Outlook

► H⁻ (hydrogen anions) > p (protons) > ions > RIBs (Radioactive ion Beams) > n (neutrons) > p (antiprotons) > c (electrons) > µ (muons)

LHC - Large Hadron Collider // SPS - Super Proton Synchroton // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator Online // REV/HIE-ISOLDE - Radioactive

3

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

NTOF

Motivations

> NEUTRON POISON:

^{25,26}Mg are the most important neutron poisons due to neutron capture on Mg stable isotopes, i.e. ^{25,26}Mg(n,γ), in competition with neutron capture on ⁵⁶Fe (the basic s-process seed for the production of heavier isotopes).

> CONSTRAINTS for ²²Ne(α ,n)²⁵Mg and ²²Ne(α , γ)²⁶Mg:

 \circ ²²Ne(α,n)²⁵Mg is one of the most important neutron source in Red Giant stars. Its reaction rate is very uncertain because of the poorly known property of the states in ²⁶Mg. From neutron measurements the energy, **J**^π and **energy** of ²⁶Mg states can be deduced, in addition to Γ_{γ} and Γ_{n} .

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive

7

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

C. Rubbia et al., A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV CERN/LHC/98 02(EET) 1998

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive

Istituto Nazionale di Fisica Nucleare

10

Istituto Nazionale di Fisica Nuclear

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

11

Istituto Nazionale di Fisica Nuclear

/ntof

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

Reaction rate (cm⁻³s⁻¹): $r = N_A N_n \langle \sigma \cdot v \rangle$ $MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

Measurement of ${}^{25}Mg(n,\gamma) @ n_TOF - CERN$

Reaction rate (cm⁻³s⁻¹):

$$r = N_A N_n \langle \sigma \cdot v \rangle$$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi}(kT)^2} \int_0^\infty \overline{\sigma(E)} E e^{-E/(kT)} dE$$

Measurement of ${}^{25}Mg(n,\gamma)$ @ n_TOF - CERN

Table 2

 25 Mg(n, γ) Maxwellian-averaged cross sections (in mb), compared with a previous work and recommended values. Experimental values include the contributions from direct radiative capture [2].

kT (keV)	5	10	15	20	25	30	40	50	60	80	100
KADoNiS	4.8	5.0	5.5	6.0	6.2	6.4(4)	6.2	5.7	5.3	4.4	3.6
Ref. [2]	3.5(4)	5.1(6)	4.9(6)	4.6(4)	4.4(6)	4.1(6)	3.5(6)	2.9(5)	2.5(4)	1.9(3)	1.4(2)
this work	2.8(2)	4.4(2)	4.3(2)	4.2(2)	4.0(2)	3.9(2)	3.6(2)	3.4(2)	3.0(2)	2.5(3)	2.2(3)

ALMA MATER STUDIORUM Università di Bologna

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

Measurement of ${}^{25}Mg(n,\gamma) @ n_TOF - CERN$

Istituto Nazionale di Fisica Nuclear

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

21

Istituto Nazionale di Fisica Nuclear

/ntof

²⁵Mg(n,γ) is not conclusive enough, need for other reaction channels

ALMA MATER STUDIORUM Università di Bologna

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

²⁵Mg(n,γ) is not conclusive enough, **need for other reaction channels**

Only **natural-parity states in ²⁶Mg** can participate in the ²²Ne(α,n)²⁵Mg reaction:

n	$J^{\pi} = 1/2^{+}$
²⁵ Mg	$J^{\pi} = 5/2^{+}$

All **states in ²⁶Mg** can participate in the ²⁵**Mg(n**,γ)²⁶**Mg** reaction:

$$J^{\pi} = \mathbf{0}^{+}, 0^{-}, 1^{+}, \mathbf{1}^{-}, \mathbf{2}^{+}, 2^{-}, \dots$$

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

Istituto Nazionale di Fisica Nuclear

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

31

Istituto Nazionale di Fisica Nuclear

/ntof

Conclusions

- > ²²Ne(α ,n) and (α , γ) represent a long-standing "problem" in nuclear astrophysics
- Measurements of ²⁵Mg(n,tot) and ²⁵Mg(n,γ) were performed at the GELINA facility and the n_TOF facility, respectively, to study excited states in ²⁶Mg
- Simultaneous resonance shape (R-Matrix) analysis of capture and transmission resulted in:
 - accurate ${}^{25}Mg(n,\gamma)$ cross section;
 - energy and J^π determination of ²⁶Mg levels: evidence for natural states;
 - o constraints for the competing ²²Ne(α , γ) reaction;
 - doubts on the E_{α} = 830 keV resonance.

ALMA MATER STUDIORUM Università di Bologna

Cristian Massimi

Department of Physics and Astronomy

cristian.massimi@unibo.it

www.unibo.it

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

37

Istituto Nazionale di Fisica Nucleare

/ntof

Intof

Istituto Nazionale di Fisica Nucleare

Extra slides: total cross section $\frac{\pi}{k_n^2} \frac{\Gamma_n \Gamma}{\left(E_n - E_R\right)^2 + \left(\Gamma/2\right)^2}$ $\frac{4\pi}{k_n} \frac{\Gamma_n(E_n - E_R)R'}{(E_n - E_R)^2 + (\Gamma/2)^2}$ + $4\pi R'^2$ $\sigma_{tot}(E_n) =$ g **g** -+

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

Istituto Nazionale di Fisica Nuclear

Istituto Nazionale di Fisica Nuclear

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

Istituto Nazionale di Fisica Nuclea

Extra slides: total cross section

47

Extra slides: experimental complication in TOF measurements

C. Massimi - Nuclear reaction rates for the s-process - 22.2.24

48

Istituto Nazionale di Fisica Nuclea

ALMA MATER STUDIORUM Università di Bologna

Cristian Massimi

Department of Physics and Astronomy

cristian.massimi@unibo.it

www.unibo.it