

# $^{13}C(\alpha,n)^{16}O$ and $^{22}Ne(\alpha,n)^{25}Mg$ at the University of Notre Dame

James deBoer

The University of Notre Dame

Nuclear Reaction Rates for the s-process, February 22-23 2024



IReNA

International Research Network for Nuclear Astrophysics



### S-FACTOR DATA AT LOW ENERGY

- Almost all angle integrated data measured using  $4\pi$  neutron moderator counters
- High efficiency for low count rate experiments
- Yields are still sensitive to the underlying neutron angular distributions, which are usually unknown!
- Angular distribution data, even at higher energies, can complement the angle integrated data.



## **Deuterated Liquid** Scintillators

- Some immediate intrinsic energy sensitivity because of the high energy cutoff of the light response spectrum (no time of flight needed)
- Intrinsic efficiency of about 20% for 1 MeV neutrons
- Spectrum has a peak from the n(d,d)n angular distribution
- Relatively inexpensive
- Can be purchased commercially from Eljen





90

120

## My favorite spectrum unfolding example

### • target

- 94% <sup>10</sup>B
- 6% <sup>11</sup>B
- Trace amounts of <sup>13</sup>C build up
- Thick Ta backing (no background)



## The price of spectrum unfolding: mapping out the detector response

- Have to create a detector response matrix that has the evolution of the light response spectrum as a function of monoenergetic neutron energy
- Accomplished with time-of-flight and a well known reaction spectrum
- Ohio University, Edwards Lab



## Response Matrix



Gives detector light response as a function of incident mono-energetic neutron energy



Fig. 10. Seven columns from the measured response matrix for a  $3 \times 2$ -in. EJ315 detector, corresponding to normalized pulse-height spectra from quasi-mono-energetic neutron spectra.

## ODeSA - ORNL Deuterated Liquid Spectroscopic Array



Nuclear Inst. and Methods in Physics Research, A 946 (2019) 162668

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

#### The ORNL Deuterated Spectroscopic Array - ODeSA

M. Febbraro<sup>a,\*</sup>, R. Toomey<sup>b</sup>, S.D. Pain<sup>a</sup>, K.A. Chipps<sup>a</sup>, B. Becker<sup>c</sup>, R.J. Newby<sup>a</sup>, Z. Meisel<sup>d</sup>, T.N. Massey<sup>d</sup>, C.R. Brune<sup>d</sup>, Q. Liu<sup>e</sup>, R.J. deBoer<sup>e</sup>, K.T. Macon<sup>e</sup>, A. Boeltzig<sup>e</sup>, J. O'Neill<sup>a,f</sup>, M.S. Smith<sup>a</sup>, M. Wiescher<sup>e</sup>, D. Soltesz<sup>d</sup>, I. Sultana<sup>d</sup>, K. Brandenburg<sup>d</sup>, S. Subedi<sup>d</sup>, S. Paneru<sup>d</sup>, T. Danley<sup>d</sup>, Y. Alberty-Jones<sup>d</sup>

<sup>a</sup> Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America

- <sup>b</sup> Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ, United States of America
- <sup>c</sup> Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, United States of America
- <sup>d</sup> Department of Physics and Astronomy, Ohio University, Athens, OH, United States of America
- e The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN, United States of America
- <sup>f</sup> Physics Department, University of Surrey, Guildford, UK



NUCLEAR NSTRUMENT & METHODS IN PHYSICS



### Mike Febbraro



# Models with MCNP: Geometric and neutron scattering corrections (very important!)





#### Zoom in of target holder

Setup pieces for MCNP simulation

# Intrinsic Efficiency of a deuterated liquid scintillator (ODeSA detector)



## Using <sup>9</sup>Be(d,n) at OU

## What about those ${}^{13}C(\alpha,n){}^{16}O$ measurements?

- Measured the differential cross section at 18 angles from 0.8 to 6.5 MeV
- Thin target (5 to 10 ug/cm<sup>2</sup>)
  - Made by Gyürky György at ATOMKI
  - Energy loss ranges between 5 and 20 keV
- Over 700 different energies
- By far the most detailed mapping of the differential cross section in energy



## R-matrix fit at low energy

- Nuclear astrophysics application
- Used the LANL fit as a starting point and then fit to our new data from 0.8 up to 3.3 MeV



## Low Energy ND data fit

- Simultaneous fit of the 18 angles we measured
- Looks good!
- Had to just change one  $\mathsf{J}^\pi$  assignment from LANL fit



# Multi parameter fitting and uncertainty analysis

Current procedure

 $\circ~$  Perform first fits using traditional  $\chi^2$  minimization routine and fits "by hand"

Refine the fit using a Bayesian method and then sample the parameter space using a Markov Chain Monte Carlo sampler to obtain the uncertainty

The MCMC takes a lot of computation time

- For AZURE2, a python wrapper called **BRICK** (pip install brick-james) has been developed using the MCMC routine emcee
- Definitely a big step forward, but we can do better

Machine learning algorithms to do R-matrix fits are being investigated







## Focused on low energy extrapolation

- Astrophysics
  - s-process nucleosynthesis
  - T = 0.2 GK
  - About 0.17 to 0.4 MeV
- Some data inconsistencies
  - Seem to now be largely resolved
- BRICK MCMC
   uncertainty estimation
- 5% at these energies



# The future of $(\alpha, n)$ measurements at ND $(E_{\alpha} = 2 \text{ to } 8 \text{ MeV})$

- Dedicated beamline at the University of Notre Dame Nuclear Science Laboratory for the life of the project!
  - FN beamline
- Full suite of detectors
  - Deuterated scintillator arrays → Neutron
  - GENIE n-type HPGe
  - Silicon detectors

- → Gamma
  → Charge particle
- Dedicated target fabrication and characterization
  - Apparatus for enriched <sup>12</sup>C foil production
  - Air-free metallic lithium handling
  - Isotopically enriched <sup>13</sup>C, <sup>10</sup>B, <sup>11</sup>B, <sup>7</sup>Li

A Comprehensive Self-Consistent Campaign to Determine Reaction Cross Sections, Secondary Gamma-Ray Yields, and Measured Neutron Spectra for Alpha-Induced Reactions on Light Nuclei



Sponsor – NNSA DNN NA22 PM – LTC David Matters TA – Dr Elizabeth Heckmaier







is work UNIVERSITY OF NOTRE DAME

<sup>7</sup>Li(a,n), <sup>10</sup>B(a,n), <sup>11</sup>B(a,n), <sup>13</sup>C(a,n), <sup>19</sup>F(a,n)

## Collaborators

PHYSICAL REVIEW LETTERS 132, 062702 (2024)

#### Measurement of the ${}^{13}C(\alpha, n_0){}^{16}O$ Differential Cross Section from 0.8 to 6.5 MeV

R. J. deBoer<sup>[0]</sup>,<sup>1,\*</sup> M. Febbraro,<sup>2</sup> D. W. Bardayan,<sup>1</sup> C. Boomershine,<sup>1</sup> K. Brandenburg,<sup>3</sup> C. Brune,<sup>3</sup> S. Coil,<sup>1</sup> M. Couder,<sup>1</sup> J. Derkin,<sup>3</sup> S. Dede,<sup>1</sup> R. Fang,<sup>1</sup> A. Fritsch,<sup>4</sup> A. Gula,<sup>1</sup> Gy. Gyürky,<sup>5</sup> B. Hackett,<sup>6</sup> G. Hamad,<sup>3</sup> Y. Jones-Alberty,<sup>3</sup> R. Kelmar,<sup>1</sup> K. Manukyan,<sup>1</sup> M. Matney,<sup>1</sup> J. McDonaugh,<sup>1</sup> Z. Meisel,<sup>3</sup> S. Moylan,<sup>1</sup> J. Nattress,<sup>2</sup> D. Odell,<sup>3</sup> P. O'Malley,<sup>1</sup> M. W. Paris,<sup>7</sup> D. Robertson,<sup>1</sup> Shahina,<sup>1</sup> N. Singh,<sup>3</sup> K. Smith,<sup>8</sup> M. S. Smith,<sup>2</sup> E. Stech,<sup>1</sup> W. Tan,<sup>1</sup> and M. Wiescher<sup>1</sup> Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA <sup>2</sup>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA <sup>3</sup>Department of Physics, Gonzaga University, Spokane, Washington 99258, USA <sup>5</sup>Institute for Nuclear Research (Atomki), P.O.B 51, H-4001 Debrecen, Hungary <sup>6</sup>Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA <sup>7</sup>Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA <sup>8</sup>Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 18 March 2023; revised 5 September 2023; accepted 17 January 2024; published 9 February 2024)



## The merciless Coulomb barrier



## The low energy <sup>22</sup>Ne( $\alpha$ ,n)<sup>25</sup>Mg S-factor

- Negative Q-value of -0.478 MeV
- Main resonance at helium burning temperatures (about 0.3 GK) is at 830 keV (or 702 keV cm frame)
- There is still some uncertainty in its strength however



## <sup>22</sup>Ne( $\alpha$ ,n)<sup>25</sup>Mg, 830 keV resonance strength

- See recent reviews by Adsley et al. (2021) and Wiescher et al. (2023)
- Shamelessly stolen several of these slides from Michael's graduate student Shahina





## Quick review of past measurements

- Drotleff *et al*. (1991)
  - Gas target with a neutron counter
  - ωγ<sub>(α,n)</sub> = 80(30) ueV
- Harms et al. (1991)
  - Gas target with <sup>3</sup>He spectrometers
  - $\omega \gamma_{(\alpha,n)} = 83(24) \text{ ueV}$
- Giesen et al. (1993)
  - Solid beam-stop target with a neutron counter
  - Background signal was 75% of yield on the resonance
  - $\omega \gamma_{(\alpha,n)} = 234(77)$  ueV
- Drotleff et al. (1993)
  - Astro paper
  - ωγ<sub>(α,n)</sub> = 180(30) ueV!
  - Renormalized to the strength to the 1580 keV
     resonance
- Jaeger *et al*. (2001)
  - Gas target using a neutron counter
  - $\omega \gamma_{(\alpha,n)} = 118(11) \text{ ueV!}$









## Drotleff renormalization

### 1580 keV resonance strength

- Wolke et al. (1989): 1360 (200) ueV
- Harms et al. (1991): 1270 (200) ueV
- Drotleff thesis: 2900(300) ueV



### Indirect measurements

- Ota *et al*. (2020)
  - <sup>22</sup>Ne(<sup>6</sup>Li,d)<sup>26</sup>Mg transfer
  - n/γ = 1.14(26)
  - Where as direct measurements imply  $n/\gamma$  of about 3

- Jayatissa et al. (2020)
  - <sup>22</sup>Ne(<sup>6</sup>Li,d)<sup>26</sup>Mg
  - $\Gamma_{\alpha} = 13 \text{ ueV} (\text{if } J^{\pi} = \overline{1})$
  - ωγ<sub>(α,n)</sub> = 42(11) ueV



## A simple setup

- 2 inch by 2 inch stilbene detector from Oak Ridge (Jason Nattress)
- Deeply implanted (200 keV) <sup>22</sup>Ne target (in tantalum), same target type used for recent <sup>22</sup>Ne(α,γ)<sup>26</sup>Mg 830 keV resonance strength measurement

#### PHYSICAL REVIEW C 106, 025805 (2022)

Direct measurement of the low-energy resonances in  $^{22}Ne(\alpha, \gamma)$  <sup>26</sup>Mg reaction

Shahina<sup>•</sup>, <sup>1,2</sup> J. Görres, <sup>1,2</sup> D. Robertson<sup>•</sup>, <sup>1,2</sup> M. Couder<sup>•</sup>, <sup>1,2</sup> O. Gomez<sup>•</sup>, <sup>1,2</sup> A. Gula, <sup>1,2</sup> M. Hanhardt<sup>•</sup>, <sup>3,4</sup> T. Kadlecek, <sup>3</sup>
R. Kelmar<sup>•</sup>, <sup>1,2</sup> P. Scholz<sup>•</sup>, <sup>1,2</sup> A. Simon<sup>•</sup>, <sup>1,2</sup> E. Stech, <sup>1,2</sup> F. Strieder<sup>•</sup>, <sup>3</sup> and M. Wiescher<sup>•</sup>, <sup>1,2</sup>
<sup>1</sup>Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
<sup>2</sup>The Joint Institution of Nuclear Astrophysics-Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, Indiana 46556, USA
<sup>3</sup>Department of Physics, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
<sup>4</sup>South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA







## Detector characterization

- We used the <sup>7</sup>Li(p,n)<sup>7</sup>Be reaction to characterize the light response of the detector at low energy
- Neutron energy on the 830 keV resonance is about 280 keV at 0 degrees



## Discrimination between neutrons and gamma rays

 Pulse shape discrimination (PSD) between neutrons and gamma rays determines the low energy efficiency cutoff



## Efficiency

- <sup>7</sup>Li(p,n)<sup>7</sup>Be yield at zero degrees compared to cross section measurements
- The efficiency using <sup>7</sup>Li(p,n)<sup>7</sup>Be and <sup>51</sup>V(p,n)<sup>51</sup>Cr activation
- Plot doesn't have close geometry correction
- When this is applied, at 280 keV, we get 0.0588(34) and 0.0572(37) for our efficiency for neutrons coming from the 830 keV resonance in the  $^{22}\mathrm{Ne}(\alpha,n)^{25}\mathrm{Mg}$  reaction



## Background subtraction

- Here's the spectrum that we get from the stilbene detector
- We see a lot of background from natural background and beam induced  $^{13}\mathrm{C}(\alpha,n)^{16}\mathrm{O}$
- However, the <sup>13</sup>C(α,n)<sup>16</sup>O background produces counts at high light output (Q = +2.2 MeV), thus we have a way to discriminate based on energy
- The shape of the residual signal is consistent with what we measured using the <sup>7</sup>Li(p,n)<sup>7</sup>Be reaction



## Our result

TABLE II. Sources of uncertainty for the measurement of the  $E_{\alpha}^{lab} = 830$  keV resonance strength in the  $^{22}Ne(\alpha, n)^{25}Mg$  reaction.

| Source                              | % contribution |
|-------------------------------------|----------------|
| Statistics                          | 6              |
| Background Subtraction              | 15             |
| Current Integration                 | 3              |
| Neutron Detection Efficiency        | 3              |
| Kinematic Effects (MCNP correction) | 5              |
| Angular distribution                | 10             |
| Target Thickness                    | 6              |
| Target Stability                    | 5              |
| Total                               | 22             |



## Collaborators

Strength measurement of the  $E^{lab}_{\alpha} = 830$  keV resonance in  ${}^{22}Ne(\alpha, n){}^{25}Mg$  reaction using a stilbene detector

Shahina,<sup>1</sup> R.J. deBoer,<sup>1</sup> J. Görres,<sup>1</sup> R. Fang,<sup>1</sup> M. Febbraro,<sup>2,3</sup> R. Kelmar,<sup>1</sup> M. Matney,<sup>1</sup> K. Manukyan,<sup>1</sup>
J.T. Nattress,<sup>2</sup> E. Robles,<sup>1</sup> T.J. Ruland,<sup>2</sup> T.T. King,<sup>2</sup> A. Sanchez,<sup>1</sup> R.S. Sidhu,<sup>4</sup> E. Stech,<sup>1</sup> and M. Wiescher<sup>1</sup>
<sup>1</sup>Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
<sup>2</sup>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
<sup>3</sup>Air Force Institute of Technology, Wright-Patterson Air Force Base, 45433, OH, USA
<sup>4</sup>School of Physics and Astronomy, The University of Edinburgh, EH9 3FD Edinburgh, United Kingdom



### Submitted to PRC





### EDINBURGH AZURE2 *R*-MATRIX WORKSHOP

- A workshop dedicated to learning how to use the AZURE2 *R*-matrix code
- Local organizer: Marialiusa Aliotta
- Introductory theory by Carl Brune
- I will go through a series of hands on examples
- June 2024, University of Edinburgh
- https://indico.ph.ed.ac.uk/event/274/
- Scotch



azure.nd.edu

### BACKUP SLIDES

### PULSE SHAPE DISCRIMINATION N/ $\Gamma$



# What does it take to do neutron spectroscopy?

- Time of flight
  - Accelerator system needs a beam that is bunched with sufficient timing
    - This is available on a lot of tandem and cyclotron accelerator system
- Detectors with intrinsic neutron energy sensitivity
  - <sup>3</sup>He spectrometer, Lithium Glass
    - Efficiency is poor (10<sup>-4</sup>)
    - Expensive (One <sup>3</sup>He spectrometer is like \$30k)



Beimer et al. (1985)

## Recently illustrated by Mohr (2018)



### P. Mohr (2018)

- There isn't much that hasn't been tried before
- But often old techniques need to be revised in light of improved technology

 Van der Zwan and Geiger used stilbene detectors for neutron spectroscopy throughout the 1970's

#### THE <sup>9</sup>Be(α, n)<sup>12</sup>C CROSS SECTION BETWEEN 1.5 AND 7.8 MeV

L. VAN DER ZWAN and K. W. GEIGER Division of Physics, National Research Council, Ottawa 7, Canada

Received 5 May 1970

- There isn't much that hasn't been tried before
- But often old techniques need to be revised in light of improved technology
- Van der Zwan and Geiger used stilbene detectors for neutron spectroscopy throughout the 1970's

#### THE <sup>9</sup>Be( $\alpha$ , n)<sup>12</sup>C CROSS SECTION

#### **BETWEEN 1.5 ANI**

L. VAN DER ZWAN and Division of Physics, National Research Co

Received 5 May

#### THE <sup>7</sup>Li( $\alpha$ , n)<sup>10</sup>B DIFFERENTIAL CROSS SECTION FOR $\alpha$ -ENERGIES OF UP TO 8 MeV

L. VAN DER ZWAN and K. W. GEIGER

Division of Physics, National Research Council, Ottawa K1A OS1, Canada

Received 14 September 1971

- There isn't much that hasn't been tried before
- But often old techniques need to be revised in light of improved technology

 Van der Zwan and Geiger used stilbene detectors for neutron spectroscopy throughout the 1970's THE <sup>9</sup>Be( $\alpha$ , n)<sup>12</sup>C CROSS SECTION

#### **BETWEEN 1.5 ANI**

L. VAN DER ZWAN and

Division of Physics, National Research Co

Received 5 May

THE  ${}^{10}B(\alpha, n)$   ${}^{13}N, {}^{13}N^*$  CROSS SECTION FOR  $\alpha$ -ENERGIES FROM 1.0 TO 5 MeV ember 1971

THE <sup>7</sup>Li( $\alpha$ , n)<sup>10</sup>B DIFFERENTIAL CROSS SECTION

FOR α-ENERGIES OF UP TO 8 MeV

L. VAN DER ZWAN and K. W. GEIGER

Division of Physics, National Research Council, Ottawa KIA OSI, Canada

L. VAN DER ZWAN and K. W. GEIGER Division of Physics, National Research Council of Canada, Ottawa, Ontario, Canada KIA OSI

Received 27 August 1973

- There isn't much that hasn't been tried before
- But often old techniques need to be revised in light of improved technology

 Van der Zwan and Geiger used stilbene detectors for neutron spectroscopy throughout the 1970's

#### THE <sup>9</sup>Be( $\alpha$ , n)<sup>12</sup>C CROSS SECTION

#### **BETWEEN 1.5 ANI**

L. VAN DER ZWAN and Division of Physics, National Research Co

Received 5 May

### THE <sup>7</sup>Li( $\alpha$ , n)<sup>10</sup>B DIFFERENTIAL CROSS SECTION FOR $\alpha$ -ENERGIES OF UP TO 8 MeV

L. VAN DER ZWAN and K. W. GEIGER

Division of Physics, National Research Council, Ottawa K1A OS1, Canada

THE  ${}^{10}B(\alpha, n) {}^{13}N, {}^{13}N$ 

FOR *a*-ENERGIES FROM 1.0 TO 5 MeV

L. VAN DER ZWAN and K. Division of Physics, National Research Council of Canad

Received 27 August 1

#### Received 14 September 1971

#### THE <sup>11</sup>B( $\alpha$ , n)<sup>14</sup>N CROSS SECTION FOR $\alpha$ -ENERGIES UP TO 8 MeV

L. VAN DER ZWAN and K. W. GEIGER Division of Physics, National Research Council of Canada, Ottawa, Ontario, Canada KIA 0S1

Received 11 March 1975

- There isn't much that hasn't been tried before
- But often old techniques need to be revised in light of improved technology

 Van der Zwan and Geiger used stilbene detectors for neutron spectroscopy throughout the 1970's

#### THE <sup>9</sup>Be( $\alpha$ , n)<sup>12</sup>C CROSS SECTION

#### **BETWEEN 1.5 ANI**

L. VAN DER ZWAN and Division of Physics, National Research Co

Received 5 May

THE  ${}^{10}B(\alpha, n) {}^{13}N, {}^{13}N$ 

FOR *a*-ENERGIES FROM 1.0 TO 5 MeV

L. VAN DER ZWAN and K. Division of Physics, National Research Council of Canad

Received 27 August 1

#### ENERGY LEVELS IN <sup>23</sup>Na FROM THE <sup>19</sup>F(α, n)<sup>22</sup>Na REACTION

L. VAN DER ZWAN and K. W. GEIGER Division of Physics, National Research Council of Canada, Ottawa, Ontario, Canada KIA OSI

#### THE <sup>7</sup>Li( $\alpha$ , n)<sup>10</sup>B DIFFERENTIAL CROSS SECTION FOR $\alpha$ -ENERGIES OF UP TO 8 MeV

L. VAN DER ZWAN and K. W. GEIGER

Division of Physics, National Research Council, Ottawa K1A OS1, Canada

Received 14 September 1971

#### THE <sup>11</sup>B( $\alpha$ , n)<sup>14</sup>N CROSS SECTION FOR $\alpha$ -ENERGIES UP TO 8 MeV

L. VAN DER ZWAN and K. W. GEIGER ics, National Research Council of Canada, wa, Ontario, Canada KIA 0S1

Received 11 March 1975

Received 31 January 1977

- There isn't much that hasn't been tried before
- But often old techniques need to be revised in light of improved technology

 Van der Zwan and Geiger used stilbene detectors for neutron spectroscopy throughout the 1970's

| 2002 20(W, W)                                                                     | 0 01100                     | ~~~~                                                                                                      |                               |                                                        |
|-----------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------|
| BETWEEN                                                                           | 1.5 ANI                     | THE <sup>7</sup> Li( $\alpha$ , n) <sup>2</sup>                                                           | <sup>10</sup> B DIFI          | FERENTIAL CROSS SECTION                                |
| L. VAN DER ZWAN and Division of Physics, National Research Control Received 5 May |                             | FOR a                                                                                                     | FOR α-ENERGIES OF UP TO 8 MeV |                                                        |
|                                                                                   |                             | L. VAN DER ZWAN and K. W. GEIGER<br>Division of Physics, National Research Council, Ottawa K1A OS1, Canad |                               |                                                        |
| THE <sup>10</sup> B(c)                                                            | Cross Sect                  | tions for the <sup>25</sup> Mg                                                                            | g(a,n) <sup>28</sup> S        | 51 4 September 1971                                    |
| FOR <i>a</i> -EN                                                                  | Reac                        | tion for $E_{\alpha} < 4.8$ M                                                                             | ٨eV                           |                                                        |
| L. VAN                                                                            |                             | on der Zwan and K. W. Geig                                                                                | er                            | N CROSS SECTION                                        |
| Division of Physics, National Res Nationa                                         | National Resea              | al Research Council of Canada, Division of Physics<br>Ottawa, Ontario, K1A OS1, Canada                    |                               | IES UP TO 8 MeV                                        |
|                                                                                   |                             | Received March 2, 1981                                                                                    |                               | N and K. W. GEIGER                                     |
| ENERGY LE<br>FROM THE <sup>19</sup> F(a                                           | (, n) <sup>22</sup> Na REA  | Accepted May 15, 1981<br>Na<br>CTION                                                                      | wa, Ont                       | al Research Council of Canada,<br>ario, Canada KIA 0SI |
| L. VAN DER ZWAN and K. W. GEIGER                                                  |                             | Received 11 March 1975                                                                                    |                               |                                                        |
| Division of Physics, National Research Counc                                      | il of C <b>anada</b> , Otta | wa, Ontario, Canada KIA OSI                                                                               |                               |                                                        |

Received 31 January 1977

THE  ${}^{9}$ Be( $\alpha$  n) ${}^{12}$ C CROSS SECTION

- Light response spectrum in a stilbene detector looks like step functions
- This can be numerically differentiated to obtain full energy peaks



- Why wasn't this technique used more broadly?
  - Stilbene detectors were expensive and fragile
  - Differentiation analysis was very time consuming in the 1970's?
  - Maybe there were questions about the reliability of the technique?
- These complications show in the data
  - Usually only a zero degree excitation function with angular distributions at only a few select energies
  - This gives a lot of information, but since reaction cross sections were not ever given, most of this data has never made it into the compilations 😕

- 30 years later...
  - The cost of stilbene crystals has come down somewhat
  - Still hard to get unfortunately, not many manufacturers
  - Some progress in increasing crystal size (up to about 2 inch by 2 inch)
  - Spectrum differentiation has been replaced by spectrum unfolding



### Inrad Optics

## Liquid Scintillators vs stilbene

- Less expensive than stilbene
- More durable than stilbene
- Liquid itself is often hazardous, but when professionally sealed there is no issue
- A bit poorer resolution and higher threshold for neutron/γ-ray discrimination
- Used for many years, often in conjunction with the time of flight technique
- Spectra can also be unfolded



Brookhaven National Laboratory: Instrumentation Division

## Liquid Scintillators: hydrogen vs deuterium

- Traditional liquid scintillators are hydrogen based
- Deuterium based scintillators are advantageous because they give more of a forward/backward peaked spectrum
- Greater sensitivity for an unfolding algorithm



Lawrence et al. (2013)

# Deuterated Liquid Scintillators: readily available

- Eljen Technologies
  - Deuterated Benzene (C<sub>6</sub>D<sub>6</sub>)
  - Deuterated Xylene (C<sub>8</sub>D<sub>10</sub>)
- Current detectors are C<sub>6</sub>D<sub>6</sub> (EJ315)
  - Liquid is purified, giving better light output, giving lower energy PSD and better resolution







## Evolution of our setup: 2016



### <sup>13</sup>C( $\alpha$ ,n)<sup>16</sup>O measurements in 2016

#### PHYSICAL REVIEW LETTERS 125, 062501 (2020)

#### New ${}^{13}C(\alpha, n){}^{16}O$ Cross Section with Implications for Neutrino Mixing and Geoneutrino Measurements

M. Febbraro,<sup>1</sup> R. J. deBoer,<sup>2</sup> S. D. Pain,<sup>1</sup> R. Toomey,<sup>3,4</sup> F. D. Becchetti,<sup>5</sup> A. Boeltzig,<sup>2,\*</sup> Y. Chen,<sup>2</sup> K. A. Chipps,<sup>1</sup> M. Couder,<sup>2</sup> K. L. Jones,<sup>6</sup> E. Lamere,<sup>2,†</sup> Q. Liu,<sup>2</sup> S. Lyons,<sup>2,‡</sup> K. T. Macon,<sup>2</sup> L. Morales,<sup>2</sup> W. A. Peters,<sup>1,6</sup> D. Robertson,<sup>2</sup> B. C. Rasco,<sup>6,1</sup> K. Smith,<sup>6,1</sup> C. Seymour,<sup>2</sup> G. Seymour,<sup>2,§</sup> M. S. Smith,<sup>1</sup> E. Stech,<sup>2</sup> B. Vande Kolk,<sup>2</sup> and M. Wiescher<sup>2</sup> <sup>1</sup>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
<sup>2</sup>The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
<sup>3</sup>Rutgers University, Piscataway, New Jersey 08854, USA
<sup>4</sup>University of Surrey, GU2 7XH, Guildford, United Kingdom
<sup>5</sup>University of Tennessee, Knoxville, Tennessee 37996, USA

### Critiques

- Massive target holder
- One detector
- Did it right
  - Waterlines out of the way
  - Brass is fine (not activated)

## Evolution of our setup: 2017

- Critiques
  - Water lines... not the best idea
- Did it right
  - High efficiency in close geometry works well
  - Even for a light mass reaction like  ${}^{10}B(\alpha,n){}^{13}N$ , kinematic broadening was not a problem

PHYSICAL REVIEW C 101, 025808 (2020)

Low-energy cross-section measurement of the  ${}^{10}B(\alpha, n){}^{13}N$  reaction and its impact on neutron production in first-generation stars

Q. Liu,<sup>1</sup> M. Febbraro,<sup>2</sup> R. J. deBoer,<sup>1</sup> S. Aguilar,<sup>1</sup> A. Boeltzig,<sup>1,\*</sup> Y. Chen,<sup>1</sup> M. Couder,<sup>1</sup> J. Görres,<sup>1</sup> E. Lamere,<sup>1,†</sup>
 S. Lyons,<sup>1,‡</sup> K. T. Macon,<sup>1,3</sup> K. Manukyan,<sup>1</sup> L. Morales,<sup>1</sup> S. Pain,<sup>2</sup> W. A. Peters,<sup>2</sup> C. Seymour,<sup>1</sup> G. Seymour,<sup>0</sup> I.<sup>8</sup>
 R. Toomey,<sup>4</sup> B. Vande Kolk,<sup>1</sup> J. Weaver,<sup>5</sup> and M. Wiescher,<sup>9</sup>
 <sup>1</sup> The Joint Institute for Nuclear Astrophysics, Department of Physics, Notre Dame, Indiana 46556, USA
 <sup>2</sup> Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
 <sup>3</sup> Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
 <sup>4</sup> Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
 <sup>5</sup> Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA



## Evolution of our setup: 2017



Far geometry setup for  ${}^{10}B(\alpha,n){}^{13}N$ 

- Critique
  - Water lines more in the way
- Did it right
  - Lower mass target holder
  - Rotatable table for more angular coverage

#### PHYSICAL REVIEW C 100, 034601 (2019)

### Measurement of the <sup>10</sup>B( $\alpha$ , $n_0$ ) <sup>13</sup>N cross section for 2.2 < $E_{\alpha}$ < 4.9 MeV and its application as a diagnostic at the National Ignition Facility

Q. Liu,<sup>1</sup> M. Febbraro,<sup>2</sup> R. J. deBoer,<sup>1</sup> A. Boeltzig,<sup>1,\*</sup> Y. Chen,<sup>1</sup> C. Cerjan,<sup>3</sup> M. Couder,<sup>1</sup> B. Frentz,<sup>1</sup> J. Görres,<sup>1</sup> E. A. Henry,<sup>3</sup> E. Lamere,<sup>1,†</sup> K. T. Macon,<sup>1,4</sup> K. V. Manukyan,<sup>1</sup> L. Morales,<sup>1</sup> P. D. O'Malley,<sup>1</sup> S. D. Pain,<sup>2</sup> W. A. Peters,<sup>2</sup> D. Schneider,<sup>3</sup> C. Seymour,<sup>1</sup> G. Seymour,<sup>1,‡</sup> E. Temanson,<sup>2</sup> R. Toomey,<sup>5</sup> B. Vande Kolk,<sup>1</sup> J. Weaver,<sup>6</sup> and M. Wiescher<sup>1</sup>
<sup>1</sup>Department of Physics, The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA
<sup>2</sup>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
<sup>3</sup>Lawrence Livermore National Laboratory, Livermore, California 94550, USA
<sup>4</sup>Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
<sup>5</sup>Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08901, USA
<sup>6</sup>Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

## Comparisons to previous data



## R-matrix fit

- Thanks to Mark Paris and Gerry Hale for supplying the resonance parameters for their R-matrix fit
  - ENDF/B VIII.0 version
- They have made the most comprehensive R-matrix fit by far
  - <sup>16</sup>O(n,total), <sup>16</sup>O(n,n), <sup>16</sup>O(n,n'),
     <sup>16</sup>O(n,α)
  - <sup>13</sup>C(α,α), <sup>13</sup>C(α,n)
  - LOTS of data sets





### Brown *et al*. (2018) (ENDF/B VIII.0)

## **AZURE: An R-matrix code**

for Nuclear Astrophysics Azuma *et al.* PRC **81**, 045805 (2010)

- Active code development by Dick Azuma from perhaps the mid '90s to 2010
- Became a collaboration sponsored by the Joint Institute for Nuclear Astrophysics (JINA)



- Several graduate students contributed to the code development
- AZURE2 code
  - Ethan Uberseder
  - 2012
  - azure.nd.edu



## Special attention to the threshold state

- Its strength can be characterized by
  - excitation energy
  - Γ<sub>n</sub>
  - $\Gamma_{\alpha}$  (or a ANC)
- Its neutron width and energy are constrained by <sup>16</sup>O(n,total) data



## $^{16}O(n, total) = ^{16}O(n, n) + ^{16}O(n, \alpha)$

- There are resonances where the <sup>16</sup>O(n,α) cross section is up to 10% of the total
- Statistical uncertainties of the total cross section data is sub percent while the systematic uncertainty is about 5% (or less)
- Thus, the <sup>16</sup>O(n,total) data constrains the absolute scale of the <sup>16</sup>O(n, $\alpha$ ) cross section



## Special attention to the threshold state

### Its ANC has been measured several times with largely consistent results

| Table 1                                                                     |          |     |  |  |  |  |
|-----------------------------------------------------------------------------|----------|-----|--|--|--|--|
| Summary of Widths and ANC Values for the $1/2^+$ State of <sup>17</sup> O C | Close to | the |  |  |  |  |
| ${}^{13}C - \alpha$ Threshold Reported in the Literature                    |          |     |  |  |  |  |

| Reference                              | $\Gamma_n$ (keV)                         | ANC (fm <sup>-1</sup> )                           |
|----------------------------------------|------------------------------------------|---------------------------------------------------|
| Fowler et al. (1973)                   | 124                                      |                                                   |
| Tilley et al. (1993)                   | $124 \pm 12$                             |                                                   |
| Sayer (2000)                           | 162.37 <b>124</b>                        |                                                   |
| Johnson et al. (2006)                  | $124 \pm 12$                             | $0.89\pm0.23$                                     |
| Pellegriti et al. (2008)               | $124 \pm 8$                              | $4.5 \pm 2.2$                                     |
| Heil et al. (2008)                     | 158.1 <b>121</b>                         |                                                   |
| La Cognata et al. (2012)               | 83_12                                    | $6.7^{+0.9}_{-0.6}$                               |
| Guo et al. (2012)                      | 124                                      | $4.0 \pm 1.1$                                     |
| La Cognata et al. (2013)               | $107 \pm 5_{\rm stat}^{+9}_{-5\rm norm}$ | $7.7 \pm 0.3_{\rm stat} {}^{+1.6}_{-1.5\rm norm}$ |
| Faestermann et al. (2015) <sup>a</sup> | $136 \pm 5$                              |                                                   |
| Avila et al. (2015)                    |                                          | $3.6\pm0.7$                                       |

**Note.** Trippella and La Cognata (2017) <sup>a</sup> These values are also used in this paper (see Section 3).

## Threshold ANC

- Rough uncertainty range from ANC and THM measurements
- Reduced width amplitude comparison
  - Avila et al.: 0.541(57) MeV<sup>1/2</sup>
  - This work: 0.539(16) MeV<sup>1/2</sup>



Mukhamedzhanov *et al*. (2017)

## Is 5% crazy! (asks Grisha)

- It definitely doesn't include everything
- What assumptions were made?
  - The systematic uncertainties of each measurement are uncorrelated
  - The level structure is correct
  - There are still systematic differences between some of the data (just on a smaller level)
    - Absolute normalization of (n,total) data
  - *R*-matrix background contributions
  - Near threshold state level properties

- Why I think its not totally crazy
  - Several of the measurements are pretty independant
  - Level structure seems pretty well characterized
  - LANL fit goes to much higher energies and explicitly gives the strengths of higher energy levels
  - Constraint from neutron total cross section data
  - Asymptotic Normalization Coefficient (or reduced width amplitude) of the near threshold state found from transfer vs that found from the *R*-matrix fit is in excellent agreement

# Previous Measurements: Moderator type detectors

- Moderator
  - Target is placed at the center of a large neutron moderator material so that the fast neutrons from the reaction a slowed to thermal energies
  - Thermal neutrons are them capture in proportional counters that utilize reactions like  ${}^{3}\text{He}(n,\alpha)$  and  ${}^{10}\text{B}(n,\alpha)$  to create a detectable signal
  - Advantage
    - High Efficiency
    - can be almost 50%!
  - Disadvantage
    - No neutron energy information, just counts
    - Are you counting the neutrons that are actually from the reaction of interest or could you be getting background signals?



Macklin (1957)

# Background issues: The Coulomb barrier and trace light elements

- It is very difficult to remove trace amounts of carbon, oxygen, and even boron from thin film type targets
- Many reactions of interest are positive Q-value, so it is often the case that excited final states can be populated
  - Must then know the branching ratio at each energy to apply the efficiency correction



## Background issues: ${}^{25}Mg(\alpha,n)$ with a ${}^{3}He$ counter

- Falahat thesis (Mainz)
- Measurements done at ND



<sup>13</sup>C(α,n)<sup>16</sup>O

<sup>17</sup>O(α,n)<sup>20</sup>Ne <sup>18</sup>O(α,n)<sup>21</sup>Ne

<sup>25</sup>Mg(α,n)<sup>28</sup>Si <sup>26</sup>Mg(α,n)<sup>29</sup>Si

> 2000 Ε<sub>α</sub> (keV)

1800

1600

# Efficiency and population of different final states

- A beam of 6 MeV alpha particles on a <sup>13</sup>C target
- Neutrons from the ground state transition (n<sub>0</sub>) will have average energy of around 6.5 MeV
- Neutrons produced from the first excited state transition (n<sub>1</sub>) will have an average energy of around 0.8 MeV



Q = +2.2 MeV

## Which efficiency should be applied?

- Efficiency difference for n<sub>0</sub> and n<sub>1</sub> neutrons of about 17% absolute efficiency or a factor of 1.9 in observed yield!
- If using a counter types detector, you would already have to know the relative branching in order to calculate the cross section from the observed yield



## <sup>13</sup>C(α,n)<sup>16</sup>O setup: 2020 & 2021



# Setup planned for 2024

### • Similar to 2023 version

- Permanent setup
- Robust frame and detector mounts
- Reworked target ladder for targets always under vacuum

