
After the Kick-Off The Status & Goals

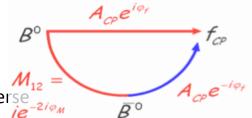
Marcello A. Gíorgí Università di Písa & INFN Písa LNF June 6, 2011 Consiglio Scientifico

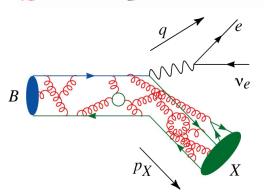
The XVII SuperB Workshop and Kick off Meetiing

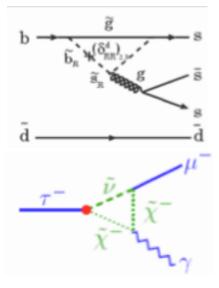
	ļ	11:00 SML	PLENARY KICK-OFF DAY				
		30 30	Status of the SuperB Project (R.Petronzio) SuperB e il Piano Nazionale della Risetca		K-OF	FDAY	
		30	(A.Agostini) SuperB nel Campus dell'Università				
		30	di Tor Vergata (P.Masi) SuperB as High Brilliance Light Source (E. Di Fabrizio)			Tuesday,May	<mark>/ 31, 2011</mark>
	†	13:30	Lunch - Fuoco di Bosco		15.30	Special MINI-PLENARYY	
	ţ	SML	KICK-OFF DAY	r e e e e e e e e e e e e e e e e e e e			
		30	The European Strategy Session and the New Particle Physics Roadmap (S. Stapnes)				
		30	Super Flavour Collires and ECFA (T. Nakada)				
]						
17:00	The	: LHC(B	3) Discovery Potential (20')) (🎥 Slides 🔼)		Guy Wilkinso	on (University of Oxford)
17:20	The	Super	r-KEKB and Belle-II Proje	acts (20') (ဲ Slides 🖾 🗐)	Peter Krizan (<i>Ljubljana Univ</i>	. and J. Stefan Institute)
17:40	The BINP Super Tau-Charm Factory (20) (🔤 Slides 🚺) Vladimir Druzhinin (BINP, Novosibirsk, Russia)						VP, Novosibirsk, Russia)
18:00	The BES-III Project (20) (Slides 🚺)						Hai-Bo Li
		18:45 SML	PLENARY Experiment Collaboration Forming				

Real Kick-Off


Real Kick-Off


SuperB is a Super Flavor Factory


High statistics production of $b \bar{b} , b \bar{b} , \tau^+ \tau^-$ pairs. Follow the high intensity route to New Physics , look at signals through high precision measurements in Flavor/



Toward New Physics

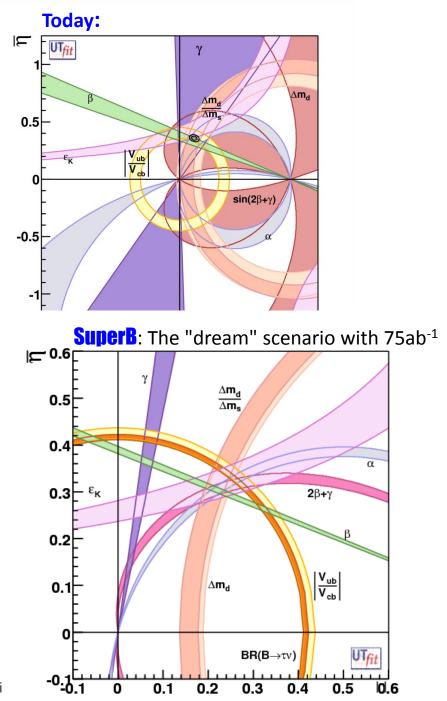
- 1. Explore the origin of CP violation
 - Key element for understanding the matter content of our present universe $ie^{-2i\varphi_M}$
 - Established in the B meson in 2001
 - Direct CPV established in B mesons in 2004
- 2. Precisely measure parameters of the standard model
 - For example the elements of the CKM quark mixing matrix
 - Disentangle the complicated interplay between weak processes and strong interaction effects
- 3. Search for the effects of physics beyond the standard model in loop diagrams
 - Potentially large effects on rates of rare decays, time dependent asymmetries, lepton flavour violation, ...
 - Sensitive even to large New Physics scale, as well as to phases and size of NP coupling constants

tatistic

Physics programme in a nutshell

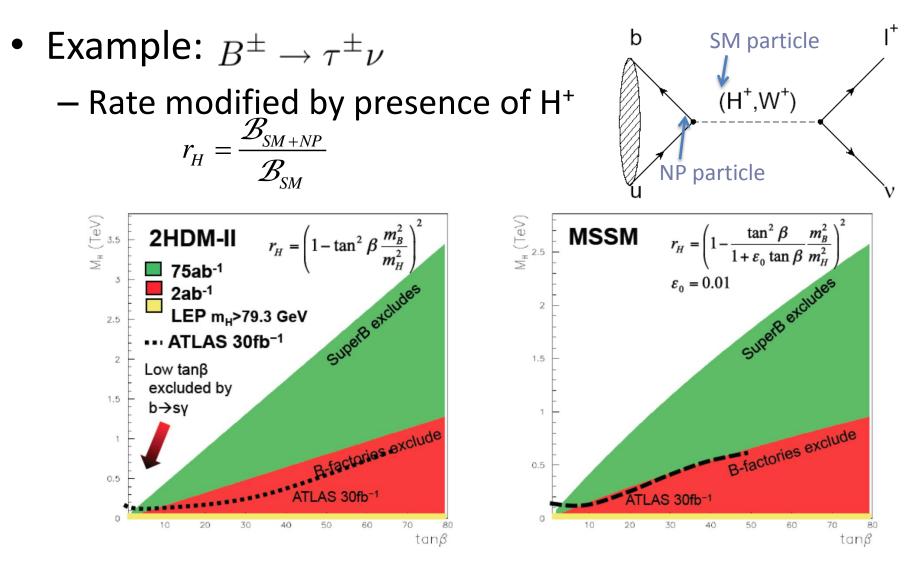
- Versatile flavour physics experiment
 - Probe new physics observables in wide range of decays.
 - Pattern of deviation from Standard Model can be used to identify structure of new physics.
 - Clean experimental environment means clean signals in many modes.
 - Polarized e^{-} beam benefit for τ LFV searches.
 - Best capability for precision CKM constraints of any existing/proposed experiment.
 - Measure angles and sides of the Unitarity triangle
 - Measure other CKM matrix elements at threshold and using $\boldsymbol{\tau}$ data.

B_{u,d} physics: Rare Processes and Precision Measurements


- Goal: Reveal presence of New Physics (NP) using two-pronged attack:
 - Search for Rare Processes: NP contributions can be as large as Standard Model ones
 - Large sensitivity to NP
 - Ability to distinguish among NP models
 - Make Precision Measurements of many quantities: over constrain the Standard Model predictions
 - NP will often lead to discrepancies in global analyses of measured processes

will build on experience of current Bfactories.

CKM constraints

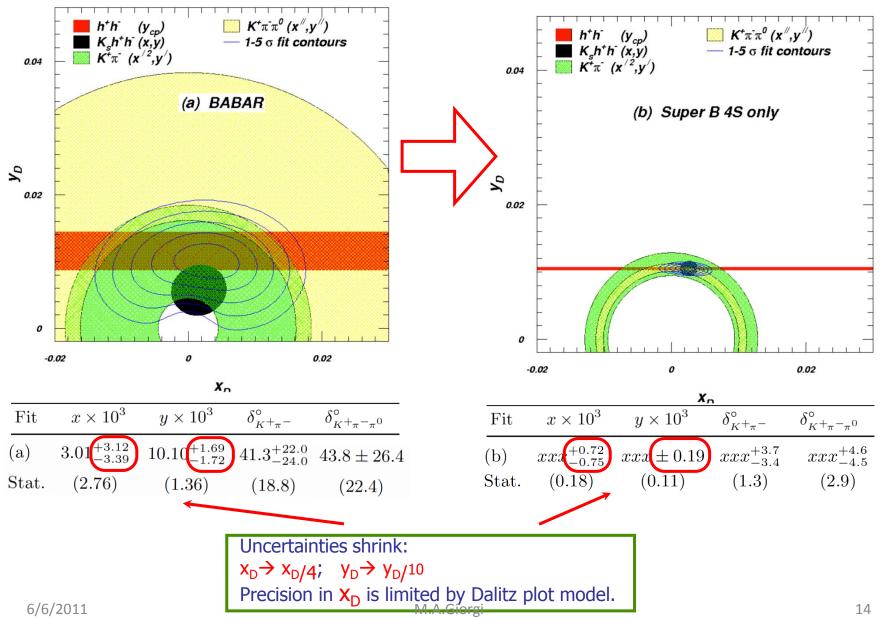

measures the sides and angles of the Unitarity Triangle (UT)

- Many measurements constrain the sides and angles of the UT: the SM predicts that all measurements "intersect" at apex of the triangle
- When NP is present, the measurements do not yield a unique apex, but you need the high precision of a Super Flavour Factory.

ō

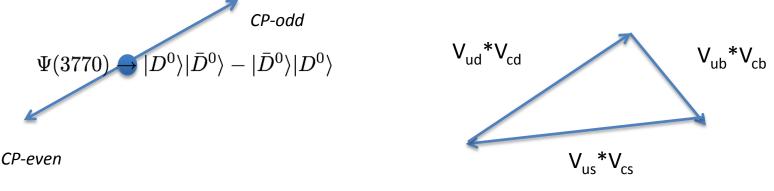
B_{u.d} physics: Rare Decays

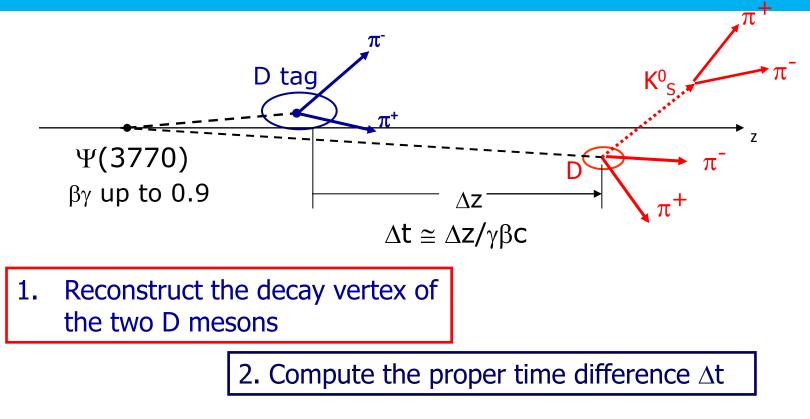
• $Run_{\beta\gamma=0.238} \alpha T(4S)$: $\mathcal{L} = 10^{36} \text{ cm}^{-2} \text{ sec}^{-1}$; $\int \mathcal{L} dt = 75 \text{ ab}^{-1}$ at the $\Upsilon(4S)$

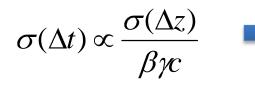

✓ Large improvement in D⁰ mixing and CPV: factor 12 improvement in statistical error wrt BaBar (0.5 ab^{-1});

✓ time-dependent measurements will benefit also of an improved (2x) D⁰ propertime resolution. [\approx 1KHz of cc]

Unique feature of SuperB

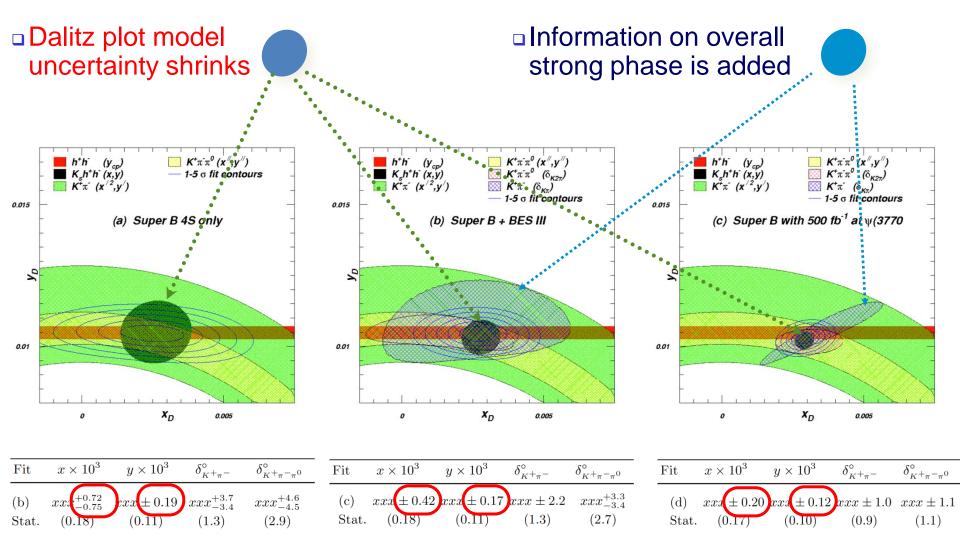

- Run at $\psi(3770)$: $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{ sec}^{-1}; \quad \int \mathcal{L} dt = 500 \text{ fb}^{-1} \text{ at the } \Psi(3770)$
 - ✓ $D\overline{D}$ coherent production with 100x BESIII data and CM boost up to $\beta\gamma=0.9$; ✓ almost zero background environment;
 - ✓ possibility of time-dependent measurements exploiting quantum coherence.




Charm at DD threshold

- Almost zero background analyses: search for rare/forbidden decays, precise measurement of relative D⁰-D⁰ strong phases, search for CPV in wrong sign (WS) semileptonic (SL) D⁰ decay modes.
- Unique possibilities of time-dependent measurements at DD threshold currently under study:
 - coherent production allows time-dependent measurements also withCPtagged events;
 - CP, T, CPT conservation tests similar to those in $K^0-\overline{K}^0$ and $B^0-\overline{B}^0$ systems;
 - measure of the unitarity triangle in the Charm sector.

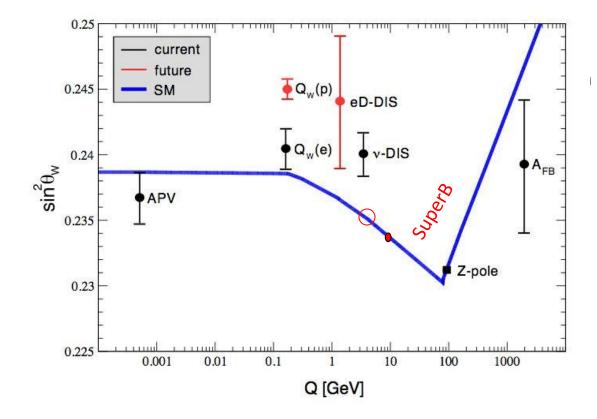
Time dependent measurements at the $\Psi(3770)$ (same as for Y(4s))

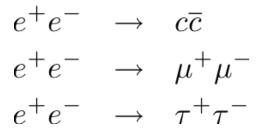


minimum boost needed to achieve the required Δt resolution

Experimental considerations of running at DD threshold with boost

- Pro:
 - Very clean environment, backgroud extremely low;
 - Quantum coherence: mixing and CP, T, CPT analyses;
 - Access to D⁰-D⁰ relative phases and possibilities of timedependent Dalitz plot analyses with a model independent approach;
 - Systematic errors reduction due to background and Dalitz model uncertainties;
- Cons:
 - Time-dependent measurement require larger CM boost compared to the B⁰-B⁰ case to achieve adequate time resolution;
 - reconstruction efficiency decreases with large CM boost. Need to optimize the boost value.


• Two improvements in mixing precision come from threshold data: CAVEAT: NO TIME-DEPENDENT STUDIES INCLUDED YET


Measurements with Polarization

Precision Electroweak

• $sin^2\theta_w$ can be measured with polarised e⁻

Measure LR asymmetry in

at the Υ (4S) to same precision as LEP/SLC at the Z-pole.

Can also perform crosscheck at $\psi(3770)$.

Is this measurement also possible with Charm?

- 1. @ Y(4S). But hadronization correction.
- 2. Operate at a ccbar vector resonance above open charm threshold $\Psi(3770)$, use the same analysis method as for b.

Polarization at low energies with high luminosity is needed

That is included in the SuperB design

g-2 Reach (Valencia Report 2008)

 Δa_{μ} is not in good agreement with SM

Measuring differential cross section of tau production would lead to measurement of the real part of tau form factor.

We began considering 1-3 prong

whose experimental selection is cleaner

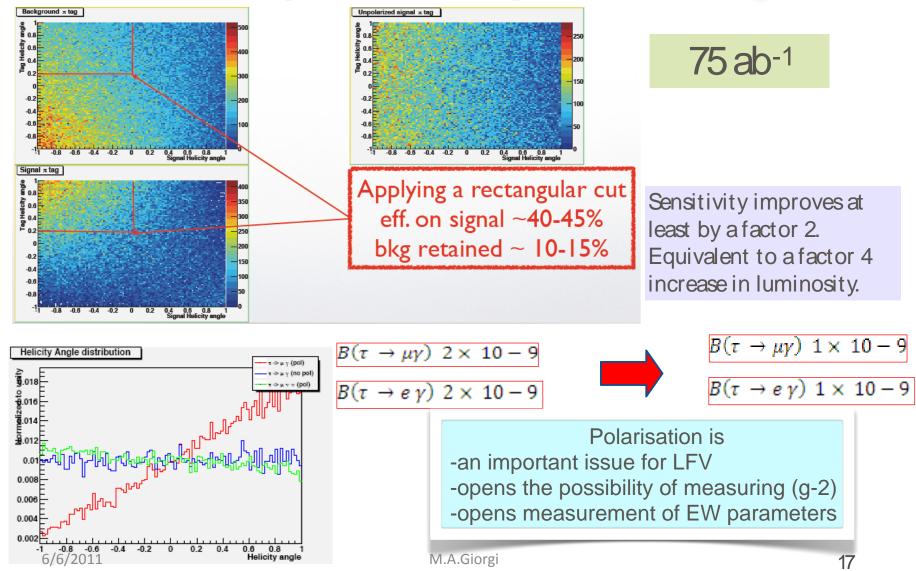
Need to tag the sample:

Lepton tag: higher purity & higher diluition (at least 3 neutrinos)

Hadronic tag: lower purity & lower diluition (2 neutrinos)

Systematics come mainly from tracking

Should be able to measure the

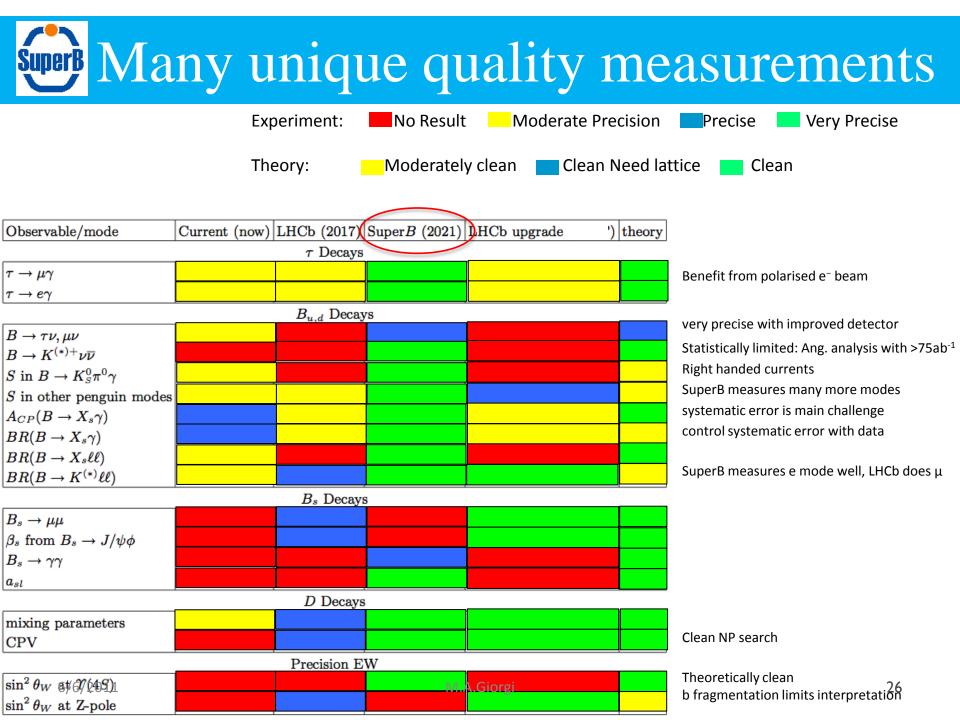

real part (0.75-1.7)x10⁻⁶

6/6/2011

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos(\theta)} = a \cdot \cos(\theta)^2 + b$$
$$a \propto \beta^2 |F_1|^2$$
$$b \propto (2 - \beta^2) \cdot |F_1|^2 + 4\mathrm{Re}[F_2]$$

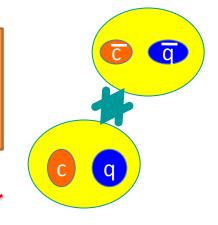
EXPERIMENT	Cross Section	Normal Asymmetry
ţ	$\operatorname{Re}\left\{F_{2}\right\}$	$\mathrm{Im}\left\{ F_{2}\right\}$
Babar+Belle $2ab^{-1}$	4.6×10^{-6}	2.1×10^{-5}
Super B/Flavor Factory (1 yr. running) 15ab ⁻¹	1.7×10^{-6}	7.8×10^{-6}
Super B/Flavor Factory (5 yrs. running) 75ab ⁻¹	$7.5 imes 10^{-7}$	$3.5 imes 10^{-6}$

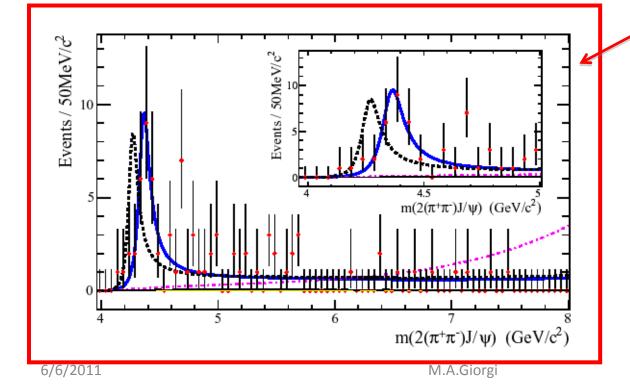
Polarized beam and tag on leptons and on hadrons $(t \rightarrow p n / t \rightarrow r n)$ reduces irreducible background!



B physics @Y (4S)

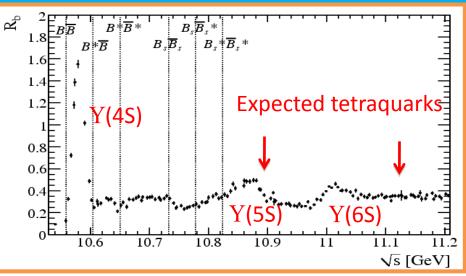
Variety of measurements for any observable

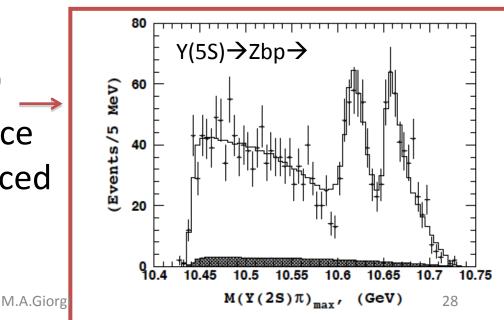

Observable	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})	Observable	B Factories (2 ab^{-1})	Super B (75 ab
$\sin(2eta)~(J/\psi~K^0)$	0.018	$0.005~(\dagger)$		<u> </u>	A4 4.3
$\cos(2eta) \; (J/\psi \; K^{*0})$	0.30	0.05	$\blacktriangleright \mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$\sin(2eta) \; (Dh^0)$	0.10	0.02	$\blacktriangleright \mathcal{B}(B \to \mu\nu)$	visible	5%
$\cos(2eta)~(Dh^0)$	0.20	0.04	$\blacktriangleright \mathcal{B}(B \to D\tau\nu)$	10%	2%
$S(J/\psi \pi^0)$	0.10	0.02			
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B o ho \gamma)$	15%	3% (†)
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	${\cal B}(B ightarrow\omega\gamma)$	30%	5%
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(B \to K^*\gamma)$		0.004 († *)
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°	$A_{CP}(B \to \rho \gamma)$	~ 0.20	0.05
$\alpha \text{ (combined)}$	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(b \to p\gamma)$		
$\gamma \ (B o DK, D o CP ext{ eigensta}$	tes) $\sim 15^{\circ}$	2.5°		0.012 (†)	0.004 (†)
$\gamma \ (B \to DK, D \to \text{suppressed s})$	states) $\sim 12^{\circ}$	2.0°	$A_{CP}(b \rightarrow (s + d))$		0.006 (†)
$\gamma \ (B \to DK, D \to \text{multibody s})$	tates) $\sim 9^{\circ}$	1.5°	$> S(K_s^0 \pi^0 \gamma)$	0.15	0.02 (*)
$\gamma (B \to DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K_{S}^{0}\pi^{\mp})$	205	5.0			
Energy to construct on the second			$A_{CP}(B \to K^* \ell \ell$	7%	1%
$S(\phi K^0)$	0.13	0.02 (*)	$A^{FB}(B \to K^*\ell\ell)$	25%	9%
$> S(\eta' K^0)$	0.05	0.01 (*)	$ A^{FB}(B \to X_s \ell \ell$		5%
$> S(K_s^0 K_s^0 K_s^0)$	0.15	0.02(*)	$ \mathcal{B}(B \to K \nu \overline{\nu}) $	visible	20%
$> S(K_s^0 \pi^0)$	0.15	0.02 (*)		VISIDIE	
$S(\omega K_s^0)$	0.17	0.03(*)	$\blacktriangleright \mathcal{B}(B \to \pi \nu \bar{\nu})$	-	possible
$S(f_0K_s^0)$	0.12	$0.02\;(*)$		Possible also at LHC	b
				Similar precision at LH	Cb
Vek (exclusive)	4% (+)	1.0% (+)	Example of	«Super B specifics»	
Vek (inclusive)	1% (*)	0.5% (+)	-	in addition to exclusiv	ve analyses
V _{n.n} (exclusive)	8% (*)	3.0% (+)		10	-
1V 6/6/2011	8% (*)	M.A.Gior		with π^{0} , γ 's, ν , many k	\5


phys	sics (polar	ized beams)			Cha	rm at Y((4S) and three	eshold	
	· ·		=		Mada		0111-	D. P. et al. (0.1	-1) 0	D (75 -1-1)
Pro	cess	Sensitivity			Mode $D^0 \rightarrow K^+F$			B Factories (2 al $2-3 \times 10^{-3}$		$rB (75 \text{ ab}^{-1})$ 5×10^{-4}
$\mathcal{B}(au$	$ ightarrow \mu \gamma)$	$2 imes 10^{-9}$			$D^0 \rightarrow K^+ \pi$ $D^0 \rightarrow K^+ \pi$		YCP YD	$2-3 \times 10^{-3}$ $2-3 \times 10^{-3}$		7×10^{-4}
	$ ightarrow e \gamma)$						x_D^2	$1-2 \times 10^{-4}$		3×10^{-5}
· · · ·	• •		_		$D^0 \rightarrow K^0_s \pi$	$+\pi^{-}$	y_D	23×10^{3}	5	5×10^{-4}
$\mathcal{B}(\tau$	$\rightarrow \mu \mu \mu$)	$2 imes 10^{-10}$					xD	23×10^{-3}		5×10^{-4}
$\mathcal{B}(au)$	$\rightarrow eee)$	$2 imes 10^{-10}$			Average		y_D	$1-2 \times 10^{-3}$		3×10^{-4}
· · · · ·		$4 imes 10^{-10}$					xD	$2-3 \times 10^{-3}$		5×10^{-4} 3×10^{-5}
					$D^0 \rightarrow K^+ \pi^-$		$x^{\prime 2}$ y^{\prime}			3×10^{-3} 7×10^{-4}
$\mathcal{B}(au$	$\to e\eta)$	$6 imes 10^{-10}$			$D^0 \rightarrow K^+ K^-$	-		To be evaluated	5	5×10^{-4}
$\mathcal{B}(au)$	$\rightarrow \ell K^0$)	$2 imes 10^{-10}$			$D^0 \rightarrow K_S^0 \pi^+ \pi$	_	x	at LHCb		9×10^{-4} 5×10^{-4}
	S7		-				$y \\ q/p $			3×10^{-2} 3×10^{-2}
						ī	ф			2°
	\mathbf{B}_{s} at Y	(38)				Cha	nnel		Sensitivity	
	<u> </u>	1					$\rightarrow e^+e^-, D^0$		1×10^{-8}	
Observable			ror with 30 ab^{-1}				,	$D^0 \to \pi^0 \mu^+ \mu^-$	$2 imes 10^{-8}$	
$\Delta\Gamma$		$.16 \text{ ps}^{-1}$.07 ps^{-1}	$\frac{0.03 \text{ ps}^{-1}}{0.01 \text{ ps}^{-1}}$				$\rightarrow \eta e^+ e^-, D^0$., ,	$3 imes 10^{-8}$	
β_s from angular a		20°	8°				<i>,</i>	$D^0 ightarrow K^0_s \mu^+ \mu^-$	$3 imes 10^{-8}$	
A_{SL}^s	<i>j</i>	0.006	0.004			D^+	$\rightarrow \pi^+ e^+ e^-,$	$D^+ \to \pi^+ \mu^+ \mu^-$	1×10^{-8}	
$A_{ m CH}$		0.004	0.004			D^0	$\rightarrow e^{\pm}\mu^{\mp}$		1×10^{-8}	
$\mathcal{B}(B_s \to \mu^+ \mu^-)$		-	$< 8 \times 10^{-9}$				$\rightarrow \pi^+ e^\pm \mu^\mp$		1×10^{-8} 1×10^{-8}	
$\left V_{td}/V_{ts} ight $		0.08	0.017				$\rightarrow \pi^0 e^{\pm} \mu^{\mp}$		$2 imes 10^{-8}$	
$\mathcal{B}(B_s \to \gamma \gamma)$		38%	7%				$\rightarrow \eta e^{\pm} \mu^{\mp}$		$3 imes 10^{-8}$	
$\frac{\beta_s \text{ from } J/\psi\phi}{\beta_s \text{ from } B_s \to K^0}$	\bar{k}^0	$\frac{16^{\circ}}{24^{\circ}}$	6° 11°			D^0 -	$\to K^0_{\mathcal{S}} e^{\pm} \mu^{\mp}$		$3 imes 10^{-8}$	
$p_s \operatorname{HOIII} D_s \to K$	11	21	11			D+	+	D^+ , V^- , $+$, $+$	1 > 10-8	
Bs : De	efinitively l	petter at LHC	^C b			D^+	$\rightarrow \pi^- \mu^+ \mu^+$	$D^+ \rightarrow K^- u^+ u^+$	1×10^{-8} 1 × 10 ⁻⁸	
₿₿6/2011				M.A	A.Giorgi	D^+	$\rightarrow \pi^- e^\pm \mu^\mp$	$D^+ \to K^- e^+ e^+$ $D^+ \to K^- \mu^+ \mu^+$ $D^+ \to K^- e^\pm \mu^\mp$	1×10^{-8}	

Exotic hadronic spectroscopy

Hints of a new type of particles with more than 3 quarks




B-Factories produced a lot of results but ...

27

Exotic hadrons @ SuperB

- Much larger statistics
 @Y(4S) needed
- High luminosity energy scan needed:
 - produce resonances
 directly (E~4-4.5 GeV)
 - Exploit recent evidence of exotic states produced at Y(5S)

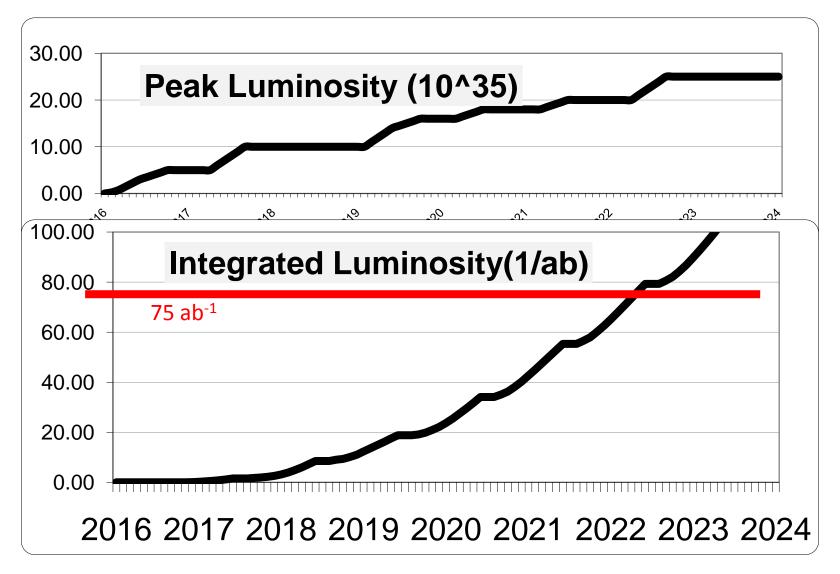
and Panda :Hadron Spectroscopy e⁺e⁻ vs pp

e⁺e⁻ collisions

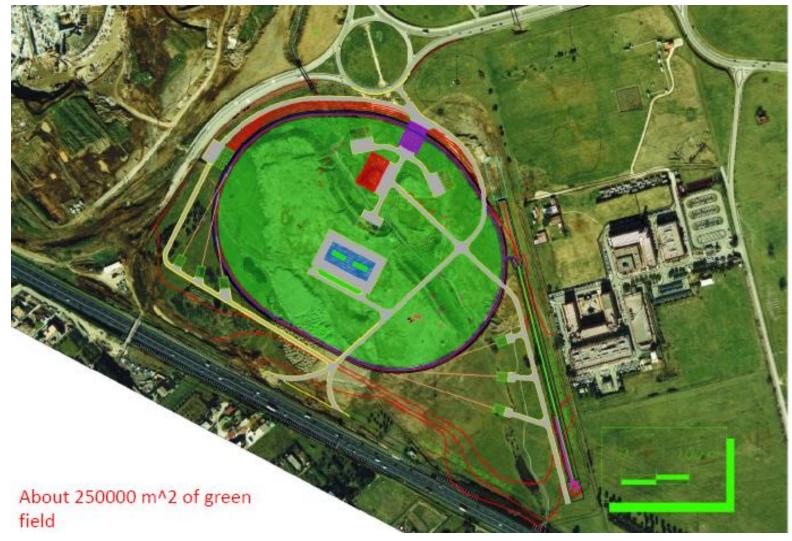
direct formation two-photon production initial state radiation (ISR) B meson decay

pp annihiliation

- + low hadronic background
- + high discovery potential
- direct formation limited to vector states
- limited mass and width resolution for non vector states
- high hadronic background
- + high discovery potential
- + direct formation for all (non-exotic) states
- + excellent mass and width resolution for all states



Parameter	Requirement	Comment
Luminosity (top-up mode)	10 ³⁶ cm ⁻² s ⁻¹ @ Y(4S)	Baseline/Flexibility with headroom at 4. 10 ³⁶ cm ⁻² s ⁻¹
Integrated luminosity	75 ab ⁻¹	Based on a "New Snowmass Year" of 1.5 x 10 ⁷ seconds (PEP-II & KEKB experience-based)
CM energy range	au threshold to Y (5S)	For Charm special runs (still asymmetric)
Minimum boost	βγ ≈0.237 ~(4.18x6.7GeV)	1 cm beam pipe radius. First measured point at 1.5 cm
e ⁻ Polarization Boost up to 0.9 in runs at low energy under evaluation for charm physics	≥80%	Enables τ <i>CP</i> and <i>T</i> violation studies, measurement of τ <i>g</i> -2 and improves sensitivity to lepton flavor-violating decays. Detailed simulation, needed to ascertain a more precise requirement, are in progress.


Future Super B Factories

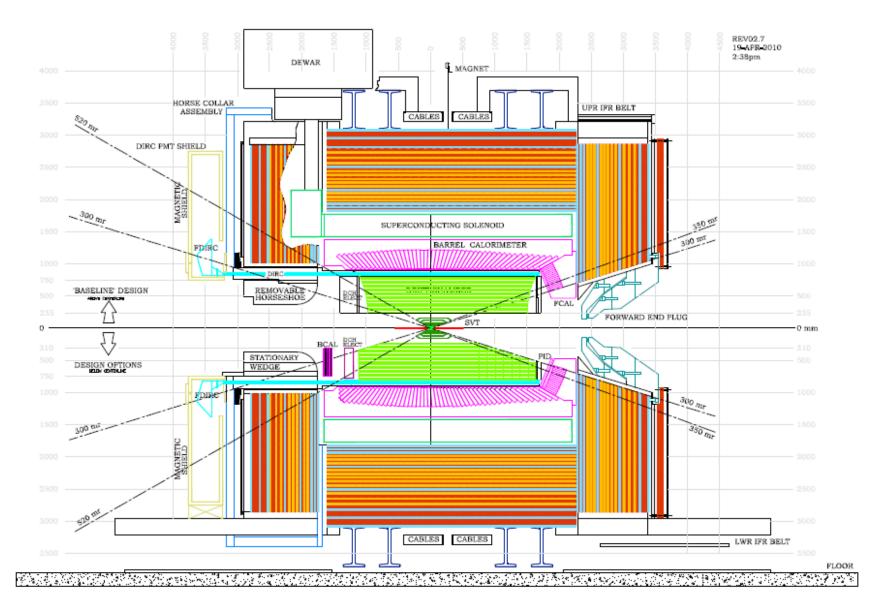
	SuperB	Super KEKB
Peak Luminosity	>10 ³⁶	$0.8 \ge 10^{36}$
Integrated Luminosity	75 ab ⁻¹	50 ab ⁻¹
Site	Green Field	KEKB Laboratory
Collisions	mid 2016	2015
Polarization	80% electron beam	No
Low energy running	10 ³⁵ @ charm threshold	No
Approval status	Approved	Approved

SuperB Luminosity model

Detector Overview

- Detector design well advanced
 - Based on BaBar "prototype"
 - CDR (2007) <u>http://web.infn.it/superb/images/stories/upload_file/superb-</u> <u>cdr.pdf</u>
 - Detector Progress Report(2010): http://arxiv.org/abs/1007.4241
- Remaining Generic Detector Options to be decided following Detector Geometry Task Force reports and DGWG studies
- Proto-Detector Organization is in place. Needs to be enhanced/modified as collaboration develops.
- R&D ongoing across detector systems allow final designs to proceed.

TDR (early 2012)


- The Technical Design Report is an essential step to a reviewable design, getting agency funding, and fabricating the detector.
- Conflicting requirements
 - Essential to reach a validated detector technical design taking machine constraints, backgrounds, overall system technical designs, and funding limitations into account.
 - Essential to enlarge the collaboration, define institutional responsibilites, and find resources for designing and building the detector
 - Essential that collaboration members, institutions and countries take ownership of the design and fabrication
 - Essential to move forward rapidly to finalizing the design and writing the TDR

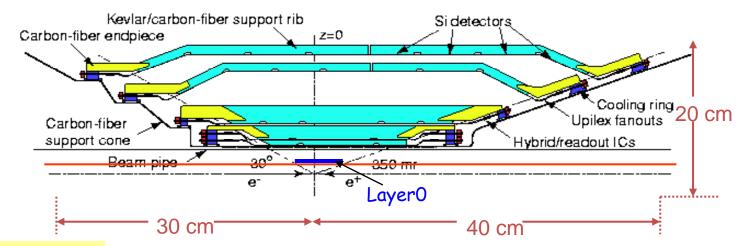
Proto Technical Coordination

Detector Coordinators – B.Ratcliff, F. Forti Technical Coordinator – W.Wisniewski

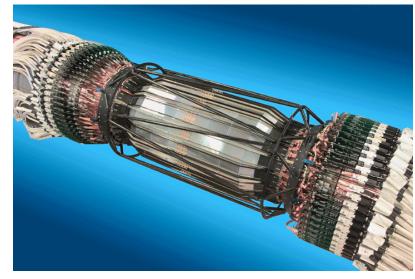
- SVT G. Rizzo
- DCH G. Finocchiaro, M.Roney
- PID N.Arnaud, J.Vavra
- EMC F.Porter, C.Cecchi
- IFR R.Calabrese
- Magnet W.Wisniewski
- Electronics, Trigger, DAQ D. Breton, U. Marconi
- Online/DAQ S.Luitz
- Offline SW
 - Simulation coordinator D.Brown
 - Fast simulation M. Rama
 - Full Simulation/Computing F. Bianchi
- Background simulation M.Boscolo, E.Paoloni
- Rad monitor –
- Lumi monitor –
- Polarimeter -
- Machine Detector Interface –
- Mechanical Integration Team F. Rafelli, W. Wisniewski, System Reps
- Central Electronics Team -
- +DGWG A. Stocchi, M. Rama
- +Geometry Selection Task Forces- H. Jawahery, W. Wisniewski

SuperB Detector (with options)

Detector Modeled

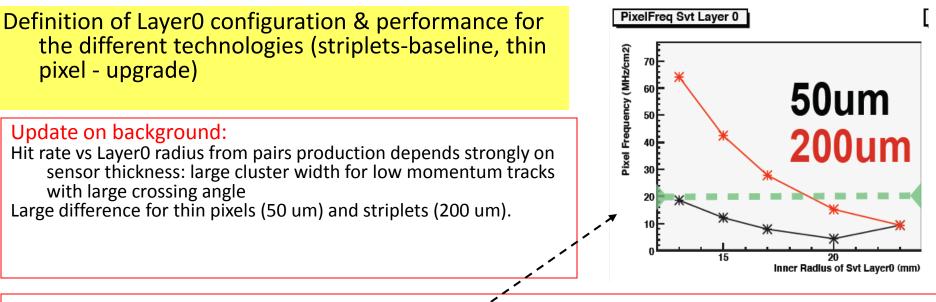


Background Rates as expected from preliminary studies


	Cross section	Evt/bunch xing	Rate	Generator
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~850	0.3THz	BBBrem
e⁺e⁻ pair production	~7.3 mbarn	~18	7GHz	Diag36
e ⁺ e ⁻ pair (seen by L0 @ 1.5 cm)	~0.3 mbarn	~0.8	0.3GHz	Diag36
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz	Bhabhayaga/B Hwide
Y(4S)	O(10⁻ ⁶) mbarn	~2.5/Million	1 KHz	
	Loss rate	Loss/bunch pass	Rate	
Touschek (LER)	14 kHz / bunch	~6/100	~14 MHz	Star (M.Boscolo)

- Primary Background Particle will eventually hit the beam pipe showering in the surrounding material
- Ad hoc Monte Carlo generator for primary particles
- Geant4 Based full simulation code for the simulation of the interaction of primary particles with the material

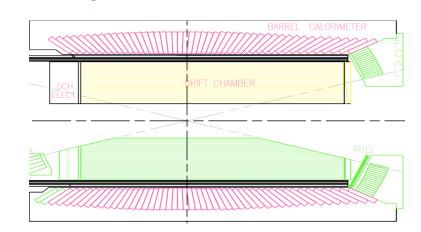
Vertex Detector (SVT)


Bergamo Bologna Milano Pavia Pisa Strasbourg Torino Trieste QMUL (TBC)RAL

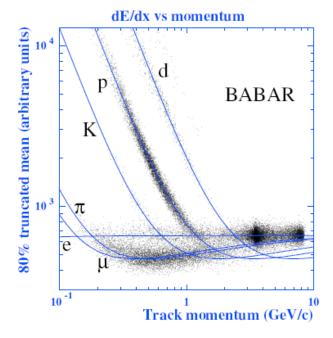
in BABAR

M.A.Giorgi

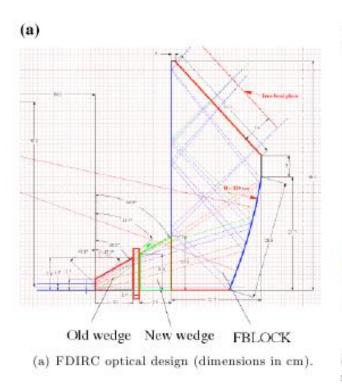
SVT

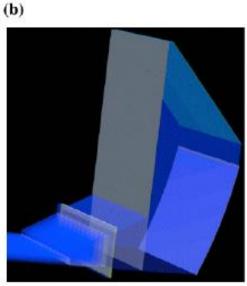


- Sustainable background hit rate (radius) depends on technology: striplets vs pixel area and readout chip.
- 1. Development of pixel chip readout architecture continue: data push and triggered with target 100MHz/cm2 (safety x5 included) with timestamp 100 ns. → radius ~1.3cm
- 2. Evaluate efficiency of FSSR2 readout chip (striplets) vs rate (goal still 100 MHz/cm2):
 - Verilog simulation results not very encouraging! Significant drop in efficiency ~ 20 MHz/cm2
 - Need to interact with Fermilab designers to understand if this is a real issue and in case if modification to digital part is possible.
- 3. Started to investigate alternative option for striplets readout chip.


DCH Baseline Design

- Provides precision momentum
- Provides particle ID via dE/dx for all low momentum tracks, even those that miss the PID system.
- A new DCH (similar to now aged BaBar DCH, which must be replaced)
 - Similar gas & cell shape (small improvements may be possible)
 - Carbon Fiber end plates (to reduce material before endcaps)
 - New electronics with location optimized.
- R&D Issues including:
 - Electronics location and/or mass to reduce effect on backward EMC,
 - Low Mass Endplates
 - Can we do better on dE/dx (counting clusters)?
 - Conical/stepped endplates or other ways to reduce sensitivity close to the beam.
 - Background simulation/shielding optimization.
- R&D has been started.
- Need to test all solutions on prototype,


Canada (UBC,Victoria, McGill, Un. Montreal) LNF



DCH

Barrel PID

(b) Its equivalent in the $\tt GEANT~4~MC$ model.

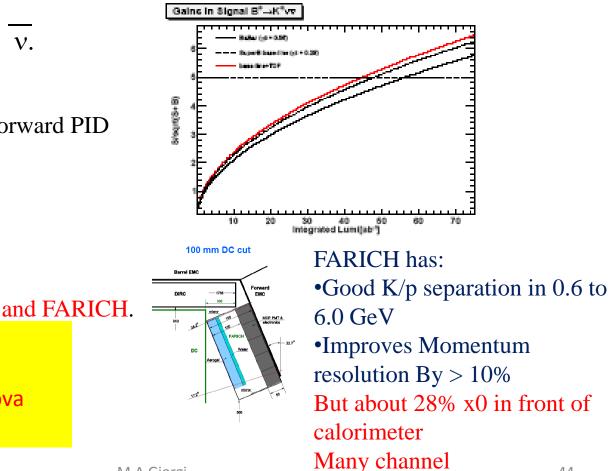
Figure 17: Barrel FDIRC Design.

DPR Design

SLAC Padova Maryland LAL Orsay LPHNE

Forward PID option

Decision about forward PID has not been taken yet. It is one of the issues in the agenda of the coming General SuperB Collaboration Meeting (Caltech December 14-18).


One benchmark is $B \rightarrow K^{(*)} \nu \overline{\nu}$.

If decision would be **YES** to Forward PID then there are two options: **TOF**

BINP

Slac

Padova

CALORIMETER

Caltech Perugia Roma **CRYSTAL STUDY** St. Gobain: 12 crystals received for the **Beam Test** Metrology to check dimension is one find

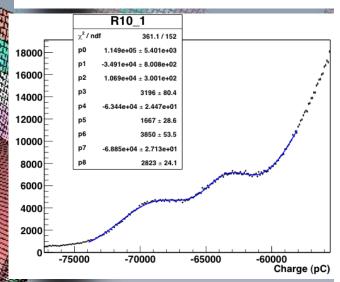
measured within specs +- 100 µm Light Yield measurement is on the second as expected) Uniformity testing just state

SIPAT: new production (compared with started) schedule is to be ready to the

MECHANICS

Prototype structure for **BT read**

Development is ongoin


- Production method w
- Precision within toleral
- Electrical conductivity a

What remains:

- Cost estimate in view of the 180 h
- schedule for production to be completed
- optical performance (to be studied with single cells)
- structural behavior (module elastic characterization, FEA of the

pport shell....)

LY(1.17MeV)=1003 p-e/MeV LY(1.33MeV)=962 p-e/MeV

st Beam

ole struc

Forward & Backward Calorimeter

The SuperB calorimeter will reuse the Babar barrel of CsI crystals. In the forward endcap CsI will be repleed with YLSO crystals, while for the backward the solution is lead+scintillating fibers 2.8 mm Pb alternated with scintillator for different layers there are different

patterns :

- Right handed logarithmic spiral
- Left-handed logarithmic spiral ٠
- Radial wedge ۲

The readout fibers are embedded in grooves cut in scintillator.

As Photo-Detector a pixel device will be used Either MPPC or SiPM.

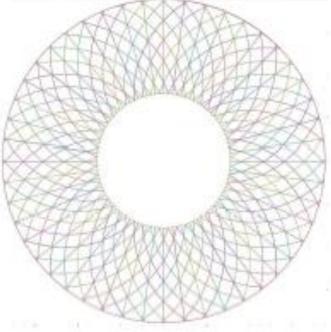
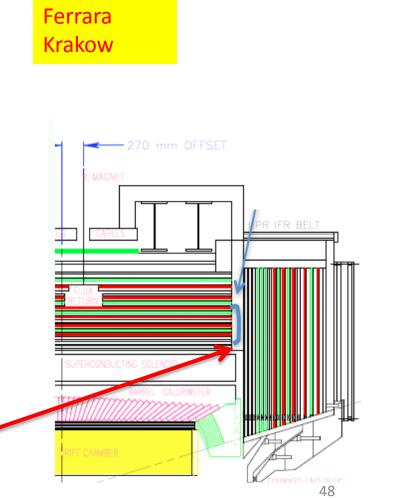


Figure 27: The backward EMC, showing the scintillator strip geometry for pattern recognition.

Bergen

IFR Advancements): Simulations

Fast Simulation


PID tables for muons and pions, based on optimization results, are in preparation and will replace the BaBar tables in the next event production

Detector Optimization

Added and tested a 9-layers configuration Started with K_L study.

Background studies Neutron background analysis continues with the study of possible shielding and remediation: added polyethylene shielding, investigating the possibility to move the

SiPM of the inner layers in a outer gap.

Baseline Design from DPR

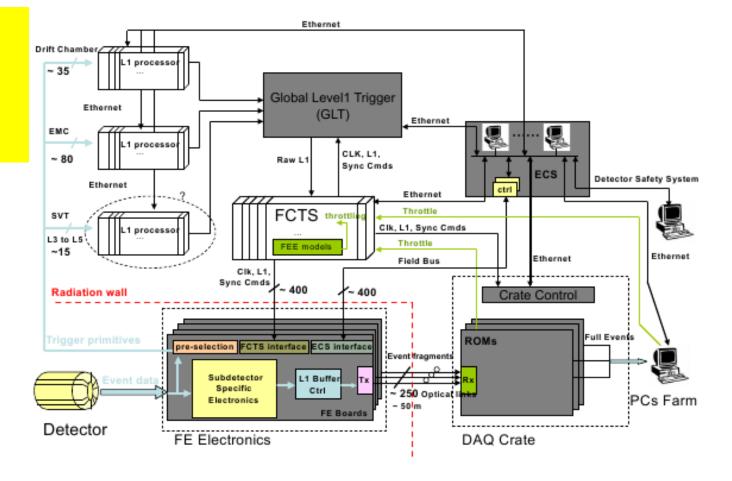
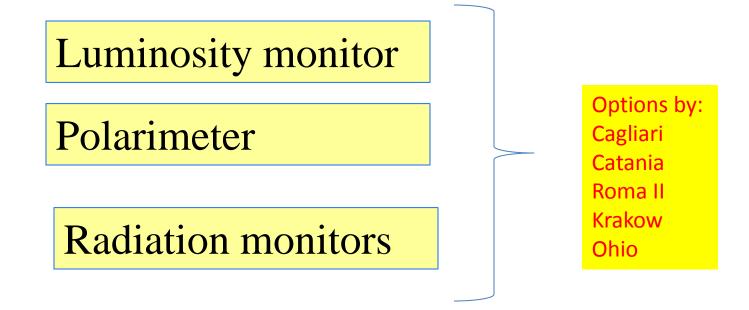



Figure 34: Overview of the ETD and Online global architecture

Systems with not yet assigned responsibilities

END