

Probing fundamental constants in primordial nucleosynthesis Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark \checkmark

Contents

- Introduction: Definition of the physics problem
- Basics of primordial nucleosynthesis
- Probing nuclear observables via primordial nucleosynthesis
- The electromagnetic fine-structure constant in primordial nucleosynthesis revisited
- Primordial nucleosynthesis at varying quark masses
- Quark mass dependence of alpha-alpha scattering
- Summary & outlook

 $\cdot \circ \triangleleft < \land \lor >$

Definition of the physics problem

 $\cdot \circ \triangleleft < \land \lor >$

History of the Universe

• BBN is a fine probe of our understanding of fundamental physics Olive et al. (2000), locco et al. (2009), Cyburt et al. (2016), Pitrou et al (2018), ...

• Are the fundamental constants really constant?

Dirac (1973), and many others

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \lor \lor \lor \lor \lor

Basics of primordial nucleosynthesis

Probing fundamental constants in primordial nucleosynthesis - Ulf-G. Meißner - Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \lhd < \land \lor > \triangleright \circ$

Fusion of *d*, ³H, ³He, ⁴He, ⁶Li, ⁷Li and ⁷Be 1 min: "deuterium bottleneck": $n + p \rightarrow d + \gamma$ possible 1 s: $n \leftrightarrow p$ freeze-out

$$ullet$$
 weak interaction $n \leftrightarrow p$: $rac{n_n}{n_p} = e^{-Q_n/T}$ $Q_N = m_n - m_p = 1.293~{
m MeV}$ [PDG]

• freeze out at $T_f = 14 \text{ MeV}
ightarrow$ free neutron decay $\sim au_n$

$$rac{n_n}{n_p} = e^{-Q_n/T} \, e^{(t-t_f)/ au_n}$$

Probing fundamental constants in primordial nucleosynthesis - Ulf-G. Meißner - Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \triangleleft \langle \wedge \nabla \rangle \rangle \diamond \bullet \bullet$

Evolution of the abundances

• Abundance defined via $Y_i = rac{n_i}{n_b}$

 n_i = density of species i

- n_b = total baryon density
- Evolution depends on
 - cosmological model: Hubble expansion
 - particle reactions $(\Gamma_{ij \to kl} = n_b \langle \sigma v \rangle_{ij \to kl})$ and decays $(\Gamma_{i \to ...})$
- \Rightarrow need to solve the system of rate equations:

Pitrou et al. (2018)

$$\dot{Y}_i \supset -Y_i \Gamma_{i
ightarrow \dots} + Y_j \Gamma_{j
ightarrow i+\dots} + Y_k Y_l \Gamma_{lk
ightarrow ij} - Y_i Y_j \Gamma_{ij
ightarrow kl}$$

Evolution of the abundances - results

• 5 different codes:

NUC123 (Kawano-code) [FORTRAN, 88 rate eqs.]

Kawano, FERMILAB-PUB-92-004-A (1992)

PRIMAT [Mathematica, 423 rate eqs.]

Pitrou et al., Phys. Rept. 754 (2018) 1

AlterBBN [C, 100 rate eqs.]

Arbey et al., Comp. Phys. Comm. 248 (2020) 106902

PArthENoPE [FORTRAN, 100 rate eqs.]

Gariazzo et al., Comp. Phys. Comm. 271 (2022) 108205

PRyMordial [Python, 423 rate eqs.]

Burns et al., [arXiv:2307.07061v2]

 $< \land \nabla$

<

Burles, Nollett, Turner (2001

- Altho' the results are by and large consistent in spite of the differences (# of rate eqs, QED, ...)
- \hookrightarrow must study the dependence of the abundances on these codes & nuclear observables before considering the variation of fundamental parameters such as α_{EM}

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 • • O

Probing nuclear observables via primordial nucleosynthesis

UGM, Metsch, Eur. Phys. J. A 58 (2022) 212 [arXiv:2208.12600 [nucl-th]]

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \triangleleft < \land \lor >$

Variations of nuclear observables

- Study the nuclear abundances Y_i as a function of nuclear observables:
 - \rightarrow binding energies, scattering lengths, neutron lifetime, ...
- Use four different BBN codes to study the systematic error \hookrightarrow only if this is small / controlled, it makes sense to look at variations of $\alpha_{\rm EM}$ etc.
- Nuclear reactions rates: $\Gamma_{ab \rightarrow cd} = n_B \gamma_{ab \rightarrow cd}$

• Inverse reaction (with spin multiplicity g_i):

$$\gamma_{cd \to ab}(T) = \left(\frac{\mu_{ab}}{\mu_{cd}}\right)^{\frac{3}{2}} \frac{g_a \, g_b}{g_c \, g_d} \, \mathrm{e}^{-\frac{Q}{kT}} \, \gamma_{ab \to cd}(T)$$

• Consider now changes in the binding energies by \pm 1 permille \rightarrow Q-values change

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark \checkmark \triangleright \triangleright •

Variations of the binding energies / Q-values

• Direct reactions a+b
ightarrow c+d

$$\begin{split} \gamma_{ab \to cd}(\widetilde{Q};T) &\approx \gamma_{ab \to cd}(Q_0;T) + \sqrt{\frac{8}{\pi \,\mu_{ab} \,(kT)^3}} \, \int_0^\infty \!\!\!\!\mathrm{d}E \, E \, \sigma(Q_0;E) \\ &\times \left(\frac{\Delta Q}{2 \,(Q_0 + E)} + \frac{\Delta Q \,\sqrt{E_G}}{2 \,(Q_0 + E)^{\frac{3}{2}}} \right) \, \mathrm{e}^{-\frac{E}{kT}} \\ &= \gamma_{ab \to cd}(Q_0;T) + \Delta \gamma(T)_{ab \to cd} \\ \widetilde{Q} &= Q_0 + \Delta Q \end{split}$$

 $E_G^{}=2\pi^2\,Z_c^2\,Z_d^2\,lpha_{
m EM}^2\,\mu_{cd}\,c^2$ Gamov energy in the exit channel

- In all earlier investigations, the T-dependence of $\Delta\gamma(T)_{ab
 ightarrow cd}$ was neglected
- \bullet Similar for radiative capture reactions $a+b\to c+\gamma$ and weak decay rates $a\to b+e^\pm+\stackrel{(-)}{\nu}$

 $\cdot \circ \triangleleft < \land \bigtriangledown > \triangleright \bullet$

Reactions considered

Radiative capture reations:

 $\begin{array}{l} n+p \rightarrow d+\gamma \,, \,\, p+d \rightarrow {}^{3}\mathrm{He}+\gamma \,, \,\, p+{}^{3}\mathrm{H} \rightarrow {}^{4}\mathrm{He}+\gamma \,, \,\, {}^{3}\mathrm{H}+{}^{4}\mathrm{He} \rightarrow {}^{7}\mathrm{Li}+\gamma \,, \\ {}^{3}\mathrm{He}+{}^{4}\mathrm{He} \rightarrow {}^{7}\mathrm{Be}+\gamma \,, \,\,\, d+{}^{4}\mathrm{He} \rightarrow {}^{6}\mathrm{Li}+\gamma \,, \,\,\, p+{}^{7}\mathrm{Li} \rightarrow {}^{4}\mathrm{He}+{}^{4}\mathrm{He}+\gamma \,, \\ p+{}^{6}\mathrm{Li} \rightarrow {}^{7}\mathrm{Be}+\gamma \,. \end{array}$

Neutron-induced reactions:

$$n + {}^{3}\text{He}
ightarrow {}^{3}\text{H} + p$$
 , $n + {}^{7}\text{Be}
ightarrow {}^{7}\text{Li} + p$, $n + {}^{7}\text{Be}
ightarrow {}^{4}\text{He} + {}^{4}\text{He}$

• Direct reactions:

$$\begin{array}{l} d+d \rightarrow {}^{3}\mathrm{H}+p \ , \ d+d \rightarrow {}^{3}\mathrm{He}+n, \ \ d+{}^{3}\mathrm{H} \rightarrow {}^{4}\mathrm{He}+n \ , \ \ d+{}^{3}\mathrm{He} \rightarrow {}^{4}\mathrm{He}+p \ , \\ p+{}^{7}\mathrm{Li} \rightarrow {}^{4}\mathrm{He}+{}^{4}\mathrm{He} \ , \ \ p+{}^{6}\mathrm{Li} \rightarrow {}^{3}\mathrm{He}+{}^{4}\mathrm{He} \ , \ \ d+{}^{7}\mathrm{Be} \rightarrow {}^{4}\mathrm{He}+{}^{4}\mathrm{He}+p \ , \\ n+{}^{7}\mathrm{Be} \rightarrow {}^{4}\mathrm{He}+{}^{4}\mathrm{He} \ , \ \ d+{}^{6}\mathrm{Li} \rightarrow {}^{3}\mathrm{He}+{}^{4}\mathrm{He}+n \end{array}$$

• plus weak decays

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < < < < > > > > •

Reaction parameterizations

The leading reaction $n+p \rightarrow d+\gamma$

• Use the pionless EFT description up to N³LO

Chen, Savage (1999), Rupak (2000)

$$\sigma_{np o d\gamma}(E) = rac{4\pi \, lpha_{
m EM} \, (\gamma^2 + p^2)^3}{\gamma^3 \, m_N^4 \, p} \left[|\chi_{M1}|^2 + |\chi_{E1}|^2
ight], \;\; \chi_{E1,M1} = f(a_s,B_d)$$

• M1 dominance at low energies, all codes agree on the T-dependence

• LO:
$$\gamma_{M1;np \to d\gamma} \propto B_d^{\frac{5}{2}} a_s^2$$
, $\frac{\partial \log \gamma_{...}}{\partial \log a_s} = 2$, $\frac{\partial \log \gamma_{...}}{\partial \log B_d} = \frac{5}{2}$ appear *T*-indep.

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 • O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

14

Temperature-dependence of nuclear reactions

• Consider the leading and the next 17 reactions in the BBN network \rightarrow integrate reaction formulae ($T_9 = T/[10^9 \text{K}]$):

• Strong suppression of the a_s and B_d dependence in the leading reactions due to T

ullet T-effect appreciable for most reactions for $T_9\gtrsim 0.1$

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

• For all codes, this work and NACRE II [Xu et al., Nucl. Phys. A 918 (2013) 61]

Probing fundamental constants in primordial nucleosynthesis - Ulf-G. Meißner - Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \triangleleft < \land \lor > \triangleright$

BBN response matrix

• Calculate the linear dependence of the Y_n for small changes in a_S, B_d, τ_n :

 $\partial \log Y_n / \partial \log X_k$, $n \in \{{}^2\mathsf{H}, {}^3\mathsf{H} + {}^3\mathsf{He}, {}^4\mathsf{He}, {}^6\mathsf{Li}, {}^7\mathsf{Li} + {}^7\mathsf{Be}\}$

• Updating all natural constants, atomic & nuclear masses, and the leading reactions from EFT in all codes ($\eta = 6.14 \cdot 10^{-10}$, $\tau_n = 879.4$ s)

code	² H	³ H + ³ He	Y_p	⁶ Li	⁷ Li + ⁷ Be
	$ imes 10^5$	$ imes 10^5$		$ imes 10^{14}$	$ imes 10^{10}$
NUC123	2.550	1.040	0.247	1.101	4.577
PArthENoPE	2.511	1.032	0.247	1.091	4.672
AlterBBN	2.445	1.031	0.247	1.078	5.425
PRIMAT	2.471	1.044	0.247	1.198	5.413
PDG (2022)	2.547		0.245		1.6
\pm	0.025		0.003		0.3

- Four codes are largely consistent
- Lithium problem prevails

Fields, Ann. Rev. Nucl. Part. Sci. 61 (2011) 47

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < < \land \bigtriangledown \checkmark \checkmark \triangleright \triangleright \bullet

Further results

• T-dependence of the reaction rates on changes in B_A for the first time considered

$$\hookrightarrow \frac{\partial \log Y_n}{\partial \log a_s}$$
 reduced by a factor of three
$$\hookrightarrow \frac{\partial \log Y_n}{\partial \log B_i}$$
 reduced by about 10 percent

• η -dependence linear and a minor effect for small changes ($\eta = 5.94 - 6.34 \cdot 10^{-10}$)

ullet Code dependence of $rac{\partial \log Y_n}{\partial X_k}$ is very small

 \Rightarrow Now we are in the position to study the dependence of the Y_n on the fundamental parameters, especially on $\alpha_{\rm EM}$

The electromagnetic fine-structure constant in primordial nucleosynthesis revisited

UGM, Metsch, Meyer, Eur. Phys. J. A 59 (2023) 223 [2305.15849 [hep-th]]

Probing fundamental constants in primordial nucleosynthesis - Ulf-G. Meißner - Seminar, Rom, Italy, Nov. 2023

The electromagnetic fine-structure constant

- Want to study variations of $\alpha_{\rm EM}$ about its present day value:
 - $\alpha_0 = 7.2973525693(11) \times 10^{-3}$
- \hookrightarrow find a bound on $\delta lpha / lpha_0$ by comparison with the measured Y_n
- Where does α appear in BBN?

- Nuclear Rates: Coulomb barrier \rightarrow Gamow factor
- Weak rates: final-state Coulomb interaction in $n \leftrightarrow p$ rates and β -decays
- Indirectly: n-p mass difference $Q_n = m_n m_p$, EM contribution to nuclear binding energies \rightarrow reaction Q-values

20

Gamow (1928)

Nuclear reaction rates: Coulomb barrier

• Reminder:

$$\boxed{\gamma_{ab \to cd}(T) = \langle \sigma v \rangle \propto \int_0^\infty dE \, \sigma_{ab \to cd}(E) \cdot E \cdot e^{-\frac{E}{k_B T}}} E = \frac{1}{2} \mu_{ab} v^2$$
$$\mu_{ab} = \frac{m_a m_b}{m_a + m_b}$$

- Coulomb barrier
- \hookrightarrow The cross section is proportional to the penetration factor (in/out)

$$\sigma \propto v_0 = rac{2\pi\eta}{\mathrm{e}^{2\pi\eta}-1}$$

with the Sommerfeld parameter

$$\eta = rac{Z_a Z_b lpha_{ extsf{EM}} c}{\hbar v} = rac{1}{2\pi} \sqrt{E_G/E}$$

and the Gamow energy

$$E_G^{}=2\pi^2\,Z_a^2\,Z_b^2\,\alpha_{\rm EM}^2\,\mu_{ab}\,c^2$$

Nuclear reaction rates: Radiative capture

- Coupling $\propto e
 ightarrow$ cross section $\sigma \propto e^2 \propto lpha_{
 m EM}$
- Capture processes are peripheral ightarrow parameterized in $f(\delta lpha_{
 m EM}) \simeq 1$
- Assume dipole dominance
- For the leading $np
 ightarrow d\gamma$ reactions use again EFT formalism
- $\Rightarrow \alpha$ -dependence of cross sections ($q_{\gamma} = 1$ for radiative capture, 0 else)

$$\sigma(\boldsymbol{lpha}_{\mathrm{EM}}, E) \propto \left(rac{\sqrt{E_G^{\mathrm{in}}/E}}{\mathrm{e}^{\sqrt{E_G^{\mathrm{in}}/E}} - 1}
ight) \cdot \left(rac{\sqrt{E_G^{\mathrm{in}}/(E+Q)}}{\mathrm{e}^{\sqrt{E_G^{\mathrm{in}}/(E+Q)}} - 1}
ight) \cdot \left(rac{lpha_{\mathrm{EM}}f(\delta lpha_{\mathrm{EM}}))^{q_{\gamma}}}{\mathrm{e}^{\sqrt{E_G^{\mathrm{in}}/(E+Q)}} - 1}
ight)$$

with $Q=m_a+m_b-m_c-m_d$

 \hookrightarrow penetration factors must be modified in there is a neutron in the initial and/or final state

 \hookrightarrow for details, see UGM, Metsch, Meyer (2023)

Nollett, Lopez (2002)

Rupak (2000)

Weak decay rates

• β -decay rate in terms of the Fermi function

$$\lambda = rac{G_F^2 \left| \mathcal{M}_{fi}
ight|^2}{2 \pi^3 c^3 \hbar^7} \, \underbrace{ \int_0^{p_{e,\max}} \left(W - \sqrt{m_e^2 c^4 + p_e^2 c^2}
ight)^2 \, F(Z,lpha,p_e) p_e^2 dp_e}_{=f(oldsymbol lpha,Q)}$$

$$p_{e, ext{max}} = rac{1}{c} \sqrt{W^2 - m_e^2 c^4} \ , \ \ W \simeq m_a - m_b = Q$$

• Fermi function (for $Zlpha\ll 1$):

$$F(\pm Z, oldsymbol{lpha}, \epsilon_e) \simeq rac{\pm 2\pi
u}{1 - \exp(\mp 2\pi
u)} \ , \
u = rac{Zlpha\epsilon_e}{\sqrt{\epsilon_e^2 - 1}}$$

 $\hookrightarrow \alpha$ -dependent rates:

$$\lambda(oldsymbollpha) = \lambda(lpha_0) rac{f(oldsymbollpha, Q)}{f(lpha_0, Q)}$$

 $\cdot \circ \triangleleft < \land \lor >$

 \sim

Segrè (1964)

Neutron decay and $n \leftrightarrow p$ rates

• Consider free neutron decay:

$$au_n(oldsymbollpha)= au_n(lpha_0)rac{f(oldsymbollpha,Q)}{f(lpha_0,Q)}$$

- But this ignores the Fermi-Dirac distribution of the neutrino and the electron
- \Rightarrow strong *T*-dependence in the lpha-variation for high *T*

• $Q_n = m_n - m_p$ has a QED contribution, use the new value:

 $\left(\Delta Q_n = Q_n^{ ext{QED}} \cdot rac{\delta lpha}{lpha} = -0.58(16) ext{ MeV} \cdot rac{\delta lpha}{lpha}
ight)$

Gasser et al. (2021)

 \hookrightarrow affects the weak $n \leftrightarrow p$ rates \rightarrow ⁴He abundance very sensitive

 \hookrightarrow affects the *Q*-values of the β -decays

 $\hookrightarrow lpha$ -dependence of $m_N = (m_p + m_n)/2$ in $np o d\gamma$ can be neglected

Indirect effects – binding energies

- EM (Coulomb) contributions to nuclear BEs from pp repulsion
- calculated in NLEFT Elhatisari et al. (2022) \rightarrow sildes
- \hookrightarrow change in Q-values

$$\Delta Q = egin{split} \delta lpha \ = rac{\delta lpha}{i} \left(-\sum_i B^i_C + \sum_j B^j_C
ight) \end{split}$$

 \Rightarrow Nuclear reaction cross sections:

 $\cdot \circ \triangleleft < \land \lor >$

$$\sigma(E, lpha) \propto \underbrace{(E + Q(lpha))^{p_{\gamma}}}_{ ext{phase space}} lpha^{q_{\gamma}} rac{\sqrt{E_G^{ ext{in}}/E}}{\exp\left(\sqrt{E_G^{ ext{in}}/E}
ight) - 1} rac{\sqrt{E_G^{ ext{out}}/(E + Q(lpha))}}{\exp\left(\sqrt{E_G^{ ext{out}}/(E + Q(lpha))}
ight) - 1}$$

 $p_{\gamma}=3\,, \quad q_{\gamma}=1 \quad ext{for radiative capture}$ $p_{\gamma}=1/2\,, \ q_{\gamma}=0 \quad ext{for other reactions}$

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

The tool: Nuclear lattice effective field theory

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 315 - 630\,{
m MeV}$$
 [UV cutoff]

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

• physics independent of the lattice spacing for $a = 1 \dots 2$ fm

Alarcon, Du, Klein, Lähde, Lee, Li, Lu, Luu, UGM, EPJA 53 (2017) 83; Klein, Elhatisari, Lähde, Lee, UGM, EPJA 54 (2018) 121

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

- The tool: Nuclear lattice effective field theory II
- For all details on chiral EFT on a lattice
 - T. Lähde & UGM *Nuclear Lattice Effective Field Theory - An Introduction* Springer Lecture Notes in Physics **957** (2019) 1 - 396
- Computational equipment

 $\cdot \circ \triangleleft < \land \bigtriangledown >$

NLEFT @ work: The spectrum of carbon-12 A.D. 2023 28

• with much improved algorithms and methods:

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

 \rightarrow solidifies earlier NLEFT statements about the structure of the 0^+_2 and 2^+_2 states

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark \checkmark \checkmark \triangleright \bullet

Results I

• Parameter fit at fixed $\eta = 6.14 \cdot 10^{-10}$ and $\tau_n = 879.4$ s:

$$rac{Y(lpha)-Y(lpha_0)}{Y(lpha_0)}=a\cdotrac{\deltalpha}{lpha_0}+b\cdot\left(rac{\deltalpha}{lpha_0}
ight)^2$$

- ullet Consider variations in lpha up to $|\delta lpha / lpha_0| \leq 0.1$
- Main results:
 - Temperature-dependence of reaction rates at varying α important
 - For most elements, change in the nuclear reaction rates is the biggest effect
 - \blacksquare ⁴He abundance indeed very sensitive to ΔQ_n
 - Lithium problem persists

 $\cdot \circ \triangleleft < \land \lor >$

Results II

• α -dependence of the abundances:

\hookrightarrow largely independent of the codes

Results III

• Extract the allowed α -variation:

• 1 σ -bounds on α -variation \Rightarrow from ⁴He:

$$|\deltalpha| < 1.8\%$$

Comparison to earlier works

• Compare the coefficient *a* for various codes and earlier works

Code/work	d	³ H+ ³ He	⁴ He	⁶ Li	⁷ Li+ ⁷ Be
PRIMAT	3.658	3.534	1.408	6.953	-4.302
AlterBBN	3.644	3.526	1.373	6.856	-4.322
Dent et al. (2007)	3.612	0.948	1.898	6.681	-11.307
Nollett et al. (2002)	3.993	1.033	_	_	-9.296
Bergstroem et al. (2002)	5.129	0.778	1.956	_	-13.619

- largest differences in ³H+³He (unmeasured) and ⁷Li+⁷Be (Li problem)
- Our bounds are stronger due to:
 - \hookrightarrow updated experimental values for masses, constants, ..., smaller Q_n^{QED}
 - \hookrightarrow different reaction rates due to cross section parametrizations
 - \hookrightarrow calculating the corrections exactly or using T-dependent approximations

Primordial nucleosynthesis at varying quark masses

Berengut, Epelbaum, Flambaum, Hanhart, UGM, Nebreda, Pelaez, Phys. Rev. D 87 (2013) 085018

Probing fundamental constants in primordial nucleosynthesis - Ulf-G. Meißner - Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \triangleleft < \land \lor >$

General remarks

- Fundamental parameters of the strong interactions: the quark masses m_u, m_d
- In almost all nuclear reactions, strong isospin violation $m_d/m_u\simeq 2$ can be neglected because:

$m_u - m_d$	\sim	1
$\Lambda_{ m QCD}$		100

- Perform a first calculation with a simplified network by considering quark mass variations of $m_q = (m_u + m_d)/2$ for nulcei up to ⁴He in the BBN network
- use the KAWANO code [NUC123]

Kawano, FERMILAB-PUB-92-004-A

from Cococubed.com

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark

Ingredients

• Nuclear forces are given by chiral EFT based on Weinberg's power counting

Weinberg 1991

- \Rightarrow Pion-exchange contributions and short-distance multi-N operators
- graphical representation of the quark mass dependence of the LO potential

• always use the Gell-Mann–Oakes–Renner relation:

$$egin{aligned} M_{\pi^\pm}^2 \sim (m_u + m_d) \end{aligned}$$

• fulfilled to better than 94% in QCD

Colangelo, Gasser, Leutwyler 2001

• Strong isospin violation and electromagnetic effects can also be included

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

Chiral nuclear EFT: Results

• Expansion to fifth order in the chiral expansion [Weinberg's power counting] Epelbaum, Krebs, UGM, Phys.Rev.Lett. **115** (2015) 122301; Eur. Phys. J. A **51** (2015) 53

• phase shifts

• np scattering at 200 MeV

NLO N2LO N3LO N4LO

\Rightarrow now a precision tool in nuclear physics

see e.g. Epelbaum, Krebs, Reinert, Front. in Phys. 8 (2020) 98

Quark mass dependence of hadron masses etc

• Quark mass dependence of hadron properties:

$$rac{\delta O_H}{\delta m_f} \equiv rac{m{K}_H^f}{m{M}_H} rac{O_H}{m_f} \,, \ \ f=u,d,s$$

- Pion and nucleon properties from lattice QCD combined with CHPT
- Contact interactions modeled by heavy meson exchanges + unitarized CHPT Epelbaum, UGM, Glöckle, Elster (2002)

Hanhart, Pelaez, Rios (2008)

Results for the NN system

• Putting pieces together for the two-nucleon system:

$$igg| K^q_{a,1S0} = 2.3^{+1.9}_{-1.8}, \ K^q_{a,3S1} = 0.32^{+0.17}_{-0.18}, \ K^q_{
m B(deut)} = -0.86^{+0.45}_{-0.50}$$

• Extends and improves earlier work based on EFTs and models

Beane, Savage (2003), Epelbaum, UGM, Glöckle (2003), Mondejar, Soto (2007), Flambaum, Wiringa (2007), Bedaque, Luu, Platter (2011) [BLP], ...

\bullet connection to lattice QCD results for NN \rightarrow later

Quark mass variations of heavier nuclei

- In BBN, we also need the variation of ³He and ⁴He. All other BEs are kept fixed.
- use the method of BLP:

Bedaque, Luu, Platter, PRC 83 (2011) 045803

$$K^q_{^A{
m He}} = K^q_{a,\;1{
m S0}} K^{a,\;1{
m S0}}_{^A{
m He}} + K^q_{
m deut} K^{
m deut}_{^A{
m He}} \,, \ \ A=3,4$$

with

$$egin{aligned} K^{a,\;180}_{^{3}\mathrm{He}} &= 0.12 \pm 0.01 \ , \ \ K^{\mathrm{deut}}_{^{3}\mathrm{He}} &= 1.41 \pm 0.01 \ K^{a,\;180}_{^{4}\mathrm{He}} &= 0.037 \pm 0.011 \ , \ \ K^{\mathrm{deut}}_{^{4}\mathrm{He}} &= 0.74 \pm 0.22 \end{aligned}$$

so that

$$\Rightarrow \left(K^q_{^{3}\mathrm{He}} = -0.94 \pm 0.75, \ K^q_{^{4}\mathrm{He}} = -0.55 \pm 0.42
ight)$$

 \Rightarrow calculate BBN response matrix of primordial abundances Y_a at fixed baryon/photon ratio [first in the isospin limit]

Limits for the quark mass variation

• Average of ²H and ⁴He:

$$\left(rac{\delta m_q}{m_q}=0.02\pm 0.04
ight)$$

- in contrast to earlier studies, we provide reliable error estimates (EFT)
- but: BLP find a stronger constraint due to the neutron life time (affects $Y(^{4}\mathrm{He})$)
- re-evaluate this under the model-independent assumption that all quark & lepton masses vary with the Higgs VEV v (CHPT w/ virtual photons)

 \rightarrow slide

 \Rightarrow results are dominated by the ⁴He abundance:

$$\left|rac{\delta v}{v}
ight| = \left|rac{\delta m_q}{m_q}
ight| \leq 0.9\%$$

• Presently updated: larger networks, 5 BBN codes and improved m_q variations UGM, Metsch, Meyer, on-going

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark \checkmark \triangleright \triangleright •

Effects of the neutron lifetime

• The neutron width $\Gamma_n \sim 1/ au_n$ is given by:

$$\Gamma_n = rac{(G_F \cos heta_C)^2}{2\pi^3} m_e^5 (1 + 3g_A^2) \ f\left(rac{(m_n - m_p)^{
m QED}}{m_e}
ight)$$

• BLP assumed that m_u/m_d stays constant when m_q changes

 \hookrightarrow induces a large dependence of the function f on variation in m_q

- \hookrightarrow is model-dependent, as all other parameters are supposed to be unaffected
- A more natural scenario for $m_u/m_d = \text{constant}$ is that the Higgs VEV changes, while all Yukawa and gauge coupling stay constant

 \hookrightarrow this reduces the dependence of Γ_n on variations of m_q by a factor of 2

 \hookrightarrow the sensitivity to au_n entirely denotes the ⁴He sensitivity

Using lattice QCD

Lähde, UGM, Epelbaum, Eur. Phys. J A 56 (2020) 89

- Use lattice data to determine $ar{A}_{s,t} = \partial a_{s,t}^{-1} / \partial M_{\pi} |_{M^{\mathrm{phys}}_{\pi}}$
 - $ar{A}_s = 0.54(24) \;, \;\; ar{A}_t = 0.33(16)$

 $\hookrightarrow \bar{A}_s$ is consistent w/ earlier determination $(0.29^{+0.25}_{-0.23})$

- $\hookrightarrow ar{A}_t$ changes sign compared to earlier det. $(-0.18^{+0.10}_{-0.10})$
- update $x_1 = \partial m_N / \partial M_\pi$ and $x_2 = \partial g_{\pi N} / \partial M_\pi$ using better LQCD data:

$$x_1 = 0.84(7) , \ \ x_2 = -0.053(16)$$

 $\hookrightarrow x_1$ and x_2 more precise

 $\hookrightarrow x_{\mathbf{2}}$ now has a definite sign

 $\cdot \circ \triangleleft < \land \lor >$

Beane et al. (2012) Yamazaki et al. (2015) Orginos et al. (2015) Beane et al. (2013) Yamazaki et al. (2012)

Quark mass dependence of alpha-alpha scattering

Elhatisari, Lähde, Lee, UGM, Vonk, JHEP 02 (2022) 001

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \lhd < \land \lor > \triangleright$

Nucleus-nucleus scattering on the lattice

- Processes involving α-particles and α-type nuclei comprise a major part of stellar nucleosynthesis, and control the production of certain elements in stars
- Ab initio calculations of scattering and reactions using continuum methods suffer from very unfavorable computational scaling with the number of nucleons A in the clusters (either factorial or exponential in A)

• This is very different in NLEFT:

Lattice EFT computational scaling $\Rightarrow (A_1 + A_2)^2$

Rupak, Lee, Phys. Rev. Lett. **111** (2013) 032502 Pine, Lee, Rupak, Eur. Phys. J. A **49** (2013) 151 Elhatisari, Lee, Phys. Rev. C **90** (2014) 064001 Elhatisari et al., Phys.Rev. C **92** (2015) 054612 Elhatisari, Lee, UGM, Rupak, Eur. Phys. J. A **52** (2016) 174

 $\cdot \circ \triangleleft < \land \lor >$

44

Ab initio alpha-alpha scattering

Elhatisari, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, UGM, Nature 528 (2015) 111 Construct the so-called adiabatic Hamiltonian single cluster simulations $L^3 \sim (100 \text{ fm})^3$ $[H^{a}_{\tau}]_{\vec{R}\vec{R}'} = \sum_{\vec{R}_{n}\vec{R}_{m}} \left[N_{\tau}^{-1/2} \right]_{\vec{R}\vec{R}_{n}} \left[H_{\tau} \right]_{\vec{R}_{n}\vec{R}_{m}} \left[N_{\tau}^{-1/2} \right]_{\vec{R}_{m}\vec{R}'}$ \hookrightarrow two-cluster simulations two cluster simulations $L^3 \sim (16 \text{ fm})^3$ Long-range Coulomb via spherical wall method (huge box) $R_{\rm wall}$ copy radial Hamiltonian Lu, Lähde, Lee, UGM, Phys. Lett. B 760 (2016) 309 \hookrightarrow single cluster simulations Same action as used for ¹²C and ¹⁶O chiral N2LO Lagrangian w/ 2NFs and 3NFs \hookrightarrow all LECs determined before in NN and NNN systems

- \hookrightarrow parameter-free predictions
- \hookrightarrow first ever *ab initio* calculation of α - α scattering

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \lhd < \land \lor > \triangleright$

Phase shifts of alpha-alpha scattering

• S-wave and D-wave phase shifts, updated in 2022

Elhatisari, Lähde, Lee, UGM, Vonk, JHEP 02 (2022) 001

 $\triangleleft \langle \land \nabla \rangle \rangle$

Alpha-alpha scattering in the multiverse

Elhatisari, Lähde, Lee, UGM, Vonk, JHEP 02 (2022) 001

• Now vary the light quark mass m_q and the fine-structure constant $\alpha_{\rm EM}$

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

Summary & outlook

- Chiral nuclear EFT: best approach to nuclear forces and few-body systems
- Nuclear lattice simulations as a new quantum many-body approach
 - \rightarrow allow to vary the parameters of QCD+QED
 - \rightarrow investigate changes in nuclear properties + scattering can also be done
- Study of the nuclear force as a function of the quark masses & $lpha_{
 m EM}$
 - \rightarrow pion-exchanges straightforward, contact interactions require modeling / LQCD
- Impact on BBN:
 - $arphi \mid \delta m_q/m_q \mid \leq 0.9\% \quad \hookrightarrow$ requires update
 - \hookrightarrow Variations of $\alpha_{\rm EM}$: many sources, new input $\rightarrow |\delta \alpha_{\rm EM}/\alpha_{\rm EM}| \leq 1.8\%$
- Sensitivity of α - α scattering to m_q and $\alpha_{\rm EM}$ worked out
 - ightarrow towards study of the triple-alpha process and the "holy grail" of nuclear astrophysics for varying m_q and $lpha_{
 m EM}$

SPARES

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

QUARK MASS DEP. of the SHORT-DISTANCE TERMS 50

- Consider a typical OBEP with $M=\sigma,
 ho,\omega,\delta,\eta$
- Quark mass dependence of the sigma and rho from unitarized CHPT

Hanhart, Pelaez, Rios (2008)

 $\Rightarrow \ K^q_{M_\sigma} = 0.081 \pm 0.007, \ \ K^q_{M_
ho} = 0.058 \pm 0.002$

⇒ couplings appear quark mass independent (requires refinement in the future) • assume a) that $K_{\omega}^q = K_{\rho}^q$ and b) neglect dep. of δ, η

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \lor \triangleright \lor

A SHORT HISTORY of the HOYLE STATE

• Heavy element generation in massive stars: triple- α process

Bethe 1938, Öpik 1952, Salpeter 1952, Hoyle 1954, ...

 ${}^{4}\text{He} + {}^{4}\text{He} \rightleftharpoons {}^{8}\text{Be}$ ${}^{8}\text{Be} + {}^{4}\text{He} \rightleftharpoons {}^{12}\text{C}^{*} \rightarrow {}^{12}\text{C} + \gamma$ ${}^{12}\text{C} + {}^{4}\text{He} \rightleftharpoons {}^{16}\text{O} + \gamma$

• Hoyle's contribution: calculation of relative abundances of ⁴He, ¹²C and ¹⁶O \Rightarrow need a resonance close to the ⁸Be + ⁴He threshold at $E_R = 0.35$ MeV \Rightarrow this corresponds to a $J^P = 0^+$ excited state 7.7 MeV above the g.s.

- a corresponding state was experimentally confirmed at Caltech at $E E(g.s.) = 7.653 \pm 0.008$ MeV Dunbar et al. 1953, Cook et al. 1957
- still on-going experimental activity, e.g. EM transitions at SDALINAC
 M. Chernykh et al., Phys. Rev. Lett. 98 (2007) 032501
- and how about theory $? \rightarrow$ this talk
- side remark: NOT driven by anthropic considerations

H. Kragh, Arch. Hist. Exact Sci. 64 (2010) 721

AN ENIGMA for NUCLEAR THEORY

• Ab initio calculation in the no-core shell model: $\approx 10^7$ CPU hrs on JAGUAR P. Navratil et al., Phys. Rev. Lett. **99** (2007) 042501; R. Roth et al., Phys. Rev. Lett. **107** (2011) 072501

 \Rightarrow excellent description, but no trace of the Hoyle state

RESULTS for HEAVIER NUCLEI

 \Rightarrow

• calculate BBN response matrix of primordial abundances Y_a at fixed baryon/photon ratio :

$$\frac{\delta \ln Y_a}{\delta \ln m_q} = \sum_{X_i} \frac{\partial \ln Y_a}{\partial \ln X_i} K_{X_i}^q$$

Х	d	³ He	$^{4}\mathrm{He}$	⁶ Li	$^{7}\mathrm{Li}$
a_s	-0.39	0.17	0.01	-0.38	2.64
B _{deut}	-2.91	-2.08	0.67	-6.57	9.44
$B_{ m trit}$	-0.27	-2.36	0.01	-0.26	-3.84
$B_{^{3}\mathrm{He}}$	-2.38	3.85	0.01	-5.72	-8.27
$B_{ m ^4He}$	-0.03	-0.84	0.00	-69.8	-57.4
$B_{^{6}\mathrm{Li}}$	0.00	0.00	0.00	78.9	0.00
$B_{^{7}\mathrm{Li}}$	0.03	0.01	0.00	0.02	-25.1
$B_{7_{Be}}$	0.00	0.00	0.00	0.00	99.1
au	0.41	0.14	0.72	1.36	0.43

updated Kawano code Kawano, FERMILAB-Pub-92/04-A

```
\cdot \circ \triangleleft < \land \lor >
```

RESULTS

• putting pieces together:

$$\left. \frac{\partial \Delta E_h}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} = -0.455(35) \left. \frac{\partial a_s^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} - 0.744(24) \left. \frac{\partial a_t^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} + 0.056(10)$$

$$\frac{\partial \Delta E_b}{\partial M_{\pi}}\Big|_{M_{\pi}^{\rm phys}} = -0.117(34) \left. \frac{\partial a_s^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} - 0.189(24) \left. \frac{\partial a_t^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} + 0.012(9)$$

- x_1 and x_2 only affect the small constant terms
- also calculated the shifts of the individual energies (not shown here)

INTERPRETATION

• $(\partial \Delta E_h / \partial M_\pi) / (\partial \Delta E_b / \partial M_\pi) \simeq 4$ $\Rightarrow \Delta E_h$ and ΔE_b cannot be independently fine-tuned

• Within error bars, $\partial \Delta E_h / \partial M_\pi \& \partial \Delta E_b / \partial M_\pi$ appear unaffected by the choice of x_1 and $x_2 \rightarrow$ indication for α -clustering

• the triple alpha process is controlled by :

$$\Delta E_{h+b} \equiv \Delta E_h + \Delta E_b = E_{12}^{\star} - 3E_4$$

$$\frac{\partial \Delta E_{h+b}}{\partial M_{\pi}}\Big|_{M_{\pi}^{\rm phys}} = -0.571(14) \left. \frac{\partial a_s^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} - 0.934(11) \left. \frac{\partial a_t^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} + 0.069(6)$$

\Rightarrow quark mass dependence of the scattering lengths discussed earlier

The fate of carbon-based life as a function of the quark mass

Epelbaum, Krebs, Lähde, Lee, UGM Phys. Rev. Lett. **110** (2013) 112502; Eur. Phys. J. **A 48** 82 (2013) update: Lähde, UGM, Epelbaum, Eur. Phys. J. **A 56** (2020) 89 review: UGM, Sci. Bull. **60** (2015) 43

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \triangleleft < \land \lor >$

Fine-tuning of the fundamental parameters

Fig. courtesy Dean Lee

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

The tool: Nuclear lattice effective field theory

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 315 - 630\,{
m MeV}\,[{
m UV}~{
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

• physics independent of the lattice spacing for $a = 1 \dots 2$ fm

Alarcon, Du, Klein, Lähde, Lee, Li, Lu, Luu, UGM, EPJA 53 (2017) 83; Klein, Elhatisari, Lähde, Lee, UGM, EPJA 54 (2018) 121

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

The tool: Nuclear lattice effective field theory II

- For all details on chiral EFT on a lattice
 - T. Lähde & UGM *Nuclear Lattice Effective Field Theory - An Introduction* Springer Lecture Notes in Physics **957** (2019) 1 - 396
- Computational equipment

Some early results: Validation of the method

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 104 (2010) 142501; Eur. Phys. J. A 45 (2010) 335

Lähde, Epelbaum, Krebs, Lee, UGM, Rupak, Phys. Lett. B 732 (2014) 110; Phys. Rev. Lett. 112 (2014) 102501

• Some groundstate energies and differences

E [MeV]	NLEFT	Exp.
³ He - ³ H	0.78(5)	0.76
⁴ He	-28.3(6)	-28.3
⁸ Be	-55(2)	-56.5
^{12}C	-92(3)	-92.2
¹⁶ O	-131(1)	-127.6
²⁰ Ne	—166(1)	-160.6
^{24}Mg	-198(2)	-198.3
²⁸ Si	-234(3)	-236.5

 $< \land \nabla$

• O

< 1

- promising results [much improved by now]
- excited states more difficult, but also doable

The spectrum of carbon-12 A.D. 2011

• After 8 • 10⁶ hrs JUGENE/JUQUEEN (and "some" human work)

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. **106** (2011) 192501 Epelbaum, Krebs, Lähde, Lee, UGM, Phys. Rev. Lett. **109** (2012) 252501

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

 $\cdot \circ \lhd < \land \lor > \triangleright$

The spectrum of carbon-12 A.D. 2023

• with much improved algorithms and methods:

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

\rightarrow solidifies earlier NLEFT statements about the structure of the 0^+_2 and 2^+_2 states

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

Pion mass dependence from MC simulations

• Consider pion mass changes as small perturbations for an energy (difference) E_i

$$egin{aligned} & \left. rac{\partial E_i}{\partial M_{\pi}}
ight|_{M_{\pi}^{\mathrm{phys}}} &= \left. rac{\partial E_i}{\partial M_{\pi}^{\mathrm{OPE}}}
ight|_{M_{\pi}^{\mathrm{phys}}} + x_1 \left. rac{\partial E_i}{\partial m_N}
ight|_{m_N^{\mathrm{phys}}} + x_2 \left. rac{\partial E_i}{\partial g_{\pi N}}
ight|_{g_{\pi N}^{\mathrm{phys}}} \ &+ x_3 \left. rac{\partial E_i}{\partial C_0}
ight|_{C_0^{\mathrm{phys}}} \left. + x_4 \left. rac{\partial E_i}{\partial C_I}
ight|_{C_I^{\mathrm{phys}}} \end{aligned}$$

with

$$x_1 \equiv \left. rac{\partial m_N}{\partial M_\pi} \right|_{M^{
m phys}_\pi}, \, x_2 \equiv \left. rac{\partial g_{\pi N}}{\partial M_\pi} \right|_{M^{
m phys}_\pi}, \, x_3 \equiv \left. rac{\partial C_0}{\partial M_\pi} \right|_{M^{
m phys}_\pi}, \, x_4 \equiv \left. rac{\partial C_I}{\partial M_\pi} \right|_{M^{
m phys}_\pi}$$

 \Rightarrow problem reduces to the calculation of the various derivatives using AFQMC and the determination of the x_i

- $ullet x_1$ and x_2 can be obtained from LQCD plus CHPT
- $ullet x_3$ and x_4 can be obtained from NN scattering and its M_{π} -dependence $o ar{A}_{s,t}$

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 • O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \triangleright • •

Correlations

• vary the quark mass derivatives of $\bar{A}_{s,t} = \partial a_{s,t}^{-1} / \partial M_{\pi}|_{M_{\pi}^{\mathrm{phys}}}$ within $-1, \ldots, +1$:

• clear correlations: the two fine-tunings are not independent

 \Rightarrow has been speculated before but could not be calculated

Weinberg (2001)

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023 · O < \wedge ∇ > \triangleright

The end-of-the-world plot I

 $ullet ~~|\delta(\Delta E_{h+b})| < 100~{
m keV}$

Oberhummer et al., Science (2000)

$$ightarrow \left| \left(0.571(14) ar{A}_s + 0.934(11) ar{A}_t - 0.069(6)
ight) rac{\delta m_q}{m_q}
ight| < 0.0015$$

An update on fine-tunings in the triple-alpha process 66

Lähde, UGM, Epelbaum, Eur. Phys. J A 56 (2020) 89

0

<

 $< \Lambda$

• Use lattice data to determine \bar{A}_s and \bar{A}_t :

 $\hookrightarrow ar{A}_s$ is consistent w/ earlier determination $\hookrightarrow ar{A}_t$ changes sign compared to earlier determination

- update x_1 and x_2 using better LQCD data:
 - $x_1 = 0.84(7)$, $x_2 = -0.053(16)$
- $\hookrightarrow x_1$ and x_2 more precise $\hookrightarrow x_2$ now has a definite sign
- \Rightarrow update end-of-the-world plot

Yamazaki et al. (2012) Orginos et al. (2015) Beane et al. (2013) Yamazaki et al. (2012)

New end-of-the-world plots

- Constraints now depend on Z, the nucleus and the sign of δm_q
- lattice values for $\bar{A}_{s,t}$:

The light quark mass is fine-tuned to $\simeq 0.5\,\%$

• chiral EFT values for $\bar{A}_{s,t}$:

The light quark mass is fine-tuned to $\simeq 5\,\%$

- Bound on $lpha_{
 m EM}$ softened (~ 7.5 %)
- $\Rightarrow \text{ need better determinations of } \bar{A}_{s,t} \xrightarrow{1 \text{ of } \partial a_s^{1/\partial M_{\pi}}} a^{1/\partial M_{\pi}} \xrightarrow{1 \text{ of } \partial a_s^{1/\partial M_{\pi}}} a^{1/\partial M_{\pi}} a^$

Lähde, UGM, Epelbaum, Eur. Phys. J A 56 (2020) 89

Probing fundamental constants in primordial nucleosynthesis – Ulf-G. Meißner – Seminar, Rom, Italy, Nov. 2023

 $\circ \lhd < \land \lor > \triangleright$