Simple Models of your Brain

Modeling Intelligence with Recurrent Neural Networks

Enrico Ventura

PhD Seminars – December 6th 2023 Università degli Studi "La Sapienza"

Outline of the talk

- 1. The simple Brain picture.
- 2. The emergence of Memory.
- 3. The emergence of "Creativity".
- 4. Conclusions.

Image from Wikipedia.

Images from Web.

Images from Web.

Rosen et al., 1992.

Wood, 1993.

Complex Behaviour

 $\begin{cases} \vec{S} = \{\pm 1\}^N \text{ neural activity} \\ \boldsymbol{J} \in \mathbb{R}^{N \times N} \text{ disorder/frustration} \end{cases}$

Learning = the process that shapes the parameters J depending on:

- a set of external stimuli (or training data).
- a specific task to be performed (which is linked to a specific dynamics).

Modeled by Learning Algorithms.

$$E[ec{S}|oldsymbol{J}] = -\sum_{i,j>i} J_{ij} S_i S_j$$
 Energy

$$T=0 \label{eq:T}$$
 Associative Memory

$$E[ec{S}|oldsymbol{J}] = -\sum_{i,j>i} J_{ij} S_i S_j$$
 Energy

T > 0

Generative Task

Associative Memory: learning algorithms

A set of $\ \underline{p=\mathcal{O}(N)}$ data $\ \{\vec{\xi^{\mu}}\}_{\mu=1}^{p}$ is learned as:

Data are consolidated as:

Hebb's Rule

$$J_{ij}^{(t=0)} = \langle S_i S_j \rangle_{data} = \frac{1}{p} \sum_{\mu=1}^{p} \xi_i^{\mu} \xi_j^{\mu}$$

Unlearning Rule (Hopfield)

$$J_{ij}^{(t)} = J_{ij}^{(t-1)} - \lambda \langle S_i S_j \rangle_{T=0}^{(t)}$$

Hopfield, 1982-1983; Amit et al. 1985; Benedetti et al., 2022.

Generative Modeling: learning algorithms

A set of $p\gg N$ data $\{\vec{\xi^{\mu}}\}_{\mu=1}^{p}$ is learned as:

Hebb's Rule

$$J_{ij}^{(t=0)} = \langle S_i S_j \rangle_{data} = \frac{1}{p} \sum_{\mu=1}^{p} \xi_i^{\mu} \xi_j^{\mu}$$

Data are consolidated as:

Boltzmann Machine (Hinton & Sejnowski)

$$J_{ij}^{(t)} = J_{ij}^{(t-1)} - \lambda \langle S_i S_j \rangle_{T=1}^{(t)}$$

Hinton et al. 1985; Ventura et al., 2023.

Conclusions

• Both **associative memory** and the **generative task** emerge from the same type of algorithm, performed at *different temperatures*.

$$\langle S_i S_j \rangle_T \longrightarrow \langle S_i S_j \rangle_{data}$$

$$P_T[\vec{S}] = \frac{1}{Z_T} \exp\left(-E[\vec{S}]/T\right) \longrightarrow P_{data}[\vec{S}]$$

Moment Matching condition

- The structure of the algorithm suggests **daily-experience** followed by **night-sleep** might play the roles of *data-acquisition* and *consolidation* (Crick and Mitchison, 1983; Girardeau et al., 2020; Hoel, 2021; Hinton, 2023).
- Our brain is not simple: not symmetric, complex connectivity, different types of neurons etc.

Conclusions

 Both associative memory and the generative task emerge from the same type of algorithm, performed at different temperatures.

$$\langle S_i S_j \rangle_T \longrightarrow \langle S_i S_j \rangle_{data}$$

$$P_T[\vec{S}] = \frac{1}{Z_T} \exp\left(-E[\vec{S}]/T\right) \longrightarrow P_{data}[\vec{S}]$$

- The structure of the algorithm suggests **daily-experience** followed by **night-sleep** might play the roles of *data-acquisition* and *consolidation* (Crick and Mitchison, 1983; Girardeau et al., 2020; Hoel, 2021; Hinton, 2023).
- Our brain is **not simple**: not symmetric, complex connectivity, different types of neurons etc.

Thank you!