

Bhabha, dark matter and the comb

Elizabeth Long elizabeth.long@uniroma1.it

Elizabeth Long - PhD Seminars

Outline

- What is dark matter?
- Dark sectors & the SM
- The PADME experiment
- The X17 anomaly
- X17 at PADME
- My analysis
- Results and implications

The dark matter problem

- In 1930s studies of galaxy clusters Zwicky found no clear mapping between angular velocity and mass
- By the **1980**s there was a large body of evidence showing the same effect

Gravitational lensing shows that dark matter has a **low self-interaction cross section**

X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et

al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al

Pink = "normal" (baryonic) matter in gas & dust

Blue = non-luminous matter inferred from gravitational effects

Elizabeth Long - PhD Seminars

- The standard model works really well!
- Everything (that matters) is particles

• What if dark matter is particles too?

FERMIONS???

DARK

The dark sector

- Assume dark matter exists in secluded "dark sector"
- Interacts with standard model only through exchange of massive "portal particle"
- If the particle has spin 1, it's known as
 "dark photon" "A'/X/…"
- SM-A' coupling $\epsilon \ll 1 \Rightarrow$ hidden

PADME production mechanisms

Production: Positron Annihilation Centre of mass energy $\sqrt{s} \approx 20$ MeV

- Vector portal production at PADME:
 - Resonant annihilation: $e^+e^- \rightarrow A'$
 - \rightarrow Increased production when $\sqrt{s} \approx M_{A'}$
 - \rightarrow Only useful if you know $M_{A'}$
 - Associated production: $e^+e^- \rightarrow \gamma A'$
 - \rightarrow Nominal process in PADME Runs 1 & 2
 - \rightarrow Useful if you don't know $M_{A'}$

PADME setup: Runs 1 and 2

INFN

ADME

- **100** μm Active diamond **Target** luminosity monitor
- **Nominal A' signal**: 1 γ in BGO Electromagnetic Calorimeter (ECal) & nothing elsewhere

PADME setup: Runs 1 and 2

- Main background **Bremsstrahlung** avoided by:
 - Plastic scintillator bars as charged particle vetoes, in combination with SAC
 - **Symmetrical bars**, numbered **0-96** from target to ECal

2

The ATOMKI anomaly: 2016 - 2022

- Collaboration at ATOMKI institute in Hungary studying IPC decays of excited ⁸Be (2016)/⁴He (2020)/ ¹²C (2022) nuclei
- Found anomaly compatible with new particle of 17 MeV mass

$m_X c^2 = 17.01 \pm 0.16$ (tot) MeV

X17 signal: Bhabha scattering

- If a new neutral boson X exists and decays to e^+e^- , must be producible in $e^+e^- \rightarrow X$
- In SM, $e^+e^- \rightarrow e^+e^-$ is known as Bhabha scattering
- Two SM channels: **S-channel** and **T-channel**

DME

X17 production

- Production cross section is non-negligible only around $\sqrt{s} = M_X$
 - Kinematic profile for $e^+ e^- \rightarrow X \rightarrow e^+ e^-$ identical to that of S-channel Bhabha scattering
- Expect increased $N(e^+e^- \rightarrow e^+e^-)$

Bhabha scattering: Inclusive of Dark Sectors

- Cross section should be big enough to observe at PADME
 - $\sim 1000 \text{ X17}$ producible per 10^{10} PoT (24 hours in Run 3)
- Fixed target \Rightarrow strong cut on T-Channel Bhabha
 - (Doing this measurement at a collider would be really hard!!!)
- Thus a thesis was born!

Bhabha at PADME 🚆

• Charged particle final states -> use charged particle detectors == vetoes

ADME

Charged particle final states -> use charged particle detectors

S-channel

0.2 0.3 0.4 0.5

- Vetoes designed to detect Bremsstrahlung positrons
- Bhabha kinematics ≠ Bremsstrahlung kinematics

0.1 0.2 0.3

0.6

0.7 0.8 0.9

θ (rad)

0.9

θ (rad)

0.8

0.7

0.4

Bhabha topology 🚆

ADME

- Bhabha kinematics \neq Bremsstrahlung kinematics •

INFŃ

Looking at Bhabha topology, select based on ChID sum ۲

Bhabha signal

ADME

• Select events with cluster in each Veto within 5 ns

INFN

 Events with ChaSum = (*PVetoChID* + *EVetoChID*) < 90 are combinatorial background

• Backgrounds:

ADME

- **Bremsstrahlung**: *e*⁺ from Bremsstrahlung with un-related in-time cluster in EVeto
 - \rightarrow Search SAC for cluster **in time** with PVeto cluster
- Beam background: particles not from Target which enter Vetoes
 - → Subtract **no-Target** data set

Data-MC comparison

- Acceptance is calculated from MC •
 - **NSignals/NPoT** ٠
- Integrating ChaSum \geq 90: •
 - NSignals Data = 46,148 •
 - NSignals MC = 48,240
- Cross section given by: •

$$\sigma = \frac{NObs}{NPoT} \frac{1}{Acc} \frac{A_c}{N_A Z_c \rho d} \times 10^{36} \text{ pb}$$

Data

Geant4

- $NPoT = 1.03188 \times 10^{10}$
- Acc = 0.0013
- $A_{C} = 12$
- $N_A = 6.022 \times 10^{23}$
- $Z_C = 6$
- $\rho = 3.2g/cm^{3}$
- $d = 0.0097 \, cm$

Interpretation for new physics

- No excess \Rightarrow 90% exclusion limit
- To be competitive, total error on measurement needs to be O(1%)
- The difficulty of measuring NPoT & lack of invariant mass reconstruction led to modified setup for Run 3

PADME Run 3: the comb (energy scan)

- Production cross section increases very sharply at resonance $\sqrt{s} \approx 17$ MeV available only at Frascati!
- Scan $E_{beam} = 260-300$ MeV in steps of ~0.7 MeV
- Need only $\sim 10^{10}$ POT per point

• Signal should emerge on top of Bhabha BG in multiple bins around one point of the scan

Conclusions

- PADME was designed to search for dark sectors, but has proved capable of performing SM measurements as well
- Bhabha cross section was successfully measured in agreement with the SM \checkmark
- Run 2 setup not optimised for X17 🗙
- \therefore Improved setup for Run 3, based partly on this work \checkmark

Thank you for listening... Let's turn on the dark!

PADME production mechanisms

Production: Positron Annihilation $\sqrt{s} \approx 20 \text{ MeV}$

- Vector portal production at PADME:
 - A'-strahlung
 - Resonant annihilation: $e^+e^- \rightarrow A'$
 - Associated production: $e^+e^- \rightarrow \gamma A'$

- Bhabha kinematics ≠ Bremsstrahlung kinematics
- \therefore no 1-1 relation between ChannelID and Bhabha particle energy & no way to select $E_{e^+} + E_{e^-} = E_{beam}$

Energy scan

ADME

• First dipole and collimators select energy

INFN

- $dp \propto \text{collimator aperture}$
- Correct the trajectory using second dipole to put the beam back on axis at PADME
- Closed collimators:
 - -> low energy spread -> excellent invariant mass resolution
 - -> low beam multiplicity -> low pileup -> excellent event separation

Data Taking: Runs 1 and 2

- Two runs in three configurations between Sept. 2018 and Dec 2020
- Acquired luminosity $> 10^{13}$ PoT
- Detailed MC simulation of beamline ([HEP 09 (2022), 233)
 - → Run 1a → Run 1b → Run 2: beam improvements reduced pileup in detectors

The Vetoes

- **Two sets** of 10×10×178 mm plastic scintillating bars:
 - In Run 2: 90 PVeto bars and 96 EVeto bars
 - **Between** Run 1 and Run 2, preamp boards of 4 central EVeto channels stopped working so were disconnected
- Detectors are inside vacuum chamber, inside 3.6 kGauss
 B-field
- Channels are numbered **0-89(95**):
 - **channel o** closest to Target
 - channel 89(95) closest to ECal
- Energy of Bremsstrahlung e⁺ increases quadratically with channel number

Cable exit to digitisers

80

PVetoChannelID

90

Run 2:

5k PoT/bunch

n

Bhabha topology

- \therefore no 1-1 relation between ChannelID and Bhabha particle energy & no way to select $E_{e^+} + E_{e^-} = E_{beam}$
- Looking at Bhabha topology, select based on ChID sum •

Bremsstrahlung background

- Bremsstrahlung contains beam background
 - Subtract time side-bands

"Pure Bremsstrahlung" background

• Take time side-bands, divide by 6 and subtract from in-time distribution:

Systematic errors

• Error on **NPoT ~ 10%**

- Error from $\Delta T(PVeto EVeto)$ ~ 2%
- Target density ~ 2%
- Target thickness ~ 1%
- Error from integration window
 ~ 0.5%
- Beam energy < 0.5%
- Ratio Bhabha/Bremsstrahlung eliminates Target uncertainties

	Data	MC	Ratio
Bhabha	$46,148 \pm 354$	$48,240 \pm 340$	0.957 ± 0.010
Bremsstrahlung	$60,376 \pm 161$	$65,789 \pm 153$	0.918 ± 0.0033
Ratio	0.764 ± 0.0062	0.733 ± 0.0054	1.04 ± 0.011

Charge X [

22/11/23

Elizabeth Long - PhD Seminars

New physics model

• No excess \Rightarrow exclusion limit

• Production rate (assuming width of resonance is negligible compared to σ_E):

$$\mathcal{N}_{A'} = N_{PoT} \frac{g_{Ve}^2}{2m_e} \frac{N_A d\rho Z}{A} f(E_{res}, E_+)$$
$$f(E_{res}, E_+) = \frac{1}{\sqrt{2\pi}\sigma_E} \exp\left\{-\frac{(E_{res} - E_+)^2}{2\sigma_E^2}\right\}$$

• Assuming 10% error \rightarrow 5% error (cf $\gamma\gamma$ <u>PhysRevD.107.012008</u>), max no. *A*' accepted to agree with SM, at 90% CL:

$$\mathcal{N}_{A'}^{Acc} \leq 1.35 \times 0.05 \times \mathcal{N}_{ee}^{Acc}$$

- d, ρ, Z, A = Target parameters
- $E_{res} = M_{A'}^2/2m_e$ = resonant energy
- $E_+ = \text{positron beam energy}$
- σ_E = beam energy spread
- $\mathcal{N}_{A'}^{Acc}$ = No. A' accepted
- $\mathcal{N}_{ee}^{Acc} = \text{No. SM } ee$ accepted

Elizabeth Long - PhD Seminars

Elizabeth Long - PhD Seminars

Bhabha time resolution

- Data-MC difference comes from:
 - 0.5 ns Veto time resolution
 - 2.7 ns decay time of re-emission light in waveguide in Veto bars
 - \leq 0.95 ns propagation time from top of bar to SiPM readout at bottom

Bhabha time resolution

• Brem-Bhabha difference comes from:

- Two Vetoes, not one Veto + fast SAC
- Larger angle Bhabha particles ⇒ fewer hits per cluster ⇒ average of emission times more variable
- Simulating SAC resolution as Gaus(0,0.15) ns, Veto electronic resolution as Gaus(0,0.4), Veto propagation time as U(1,-1) ns and emission time exp(-1/2.7) ns
- Assuming two bar PVeto Cluster

Background subtraction

• Full Target data - Bremsstrahlung - no-Target distribution

• Bremsstrahlung is auto-scaled

ADME

- No-Target distribution scaled to integral of first 10 bins (ChaSum = [60,70]) in full Target data
 - \rightarrow If done successfully, final distribution will have ChaSum = [70,90] at 0 as well

Data-MC comparison

- Acceptance is calculated from MC
 - NSignals/NPoT
- Integrating ChaSum \geq 90:
 - NSignals Data = 46,148
 - **NSignals MC** = 56,934
 - Ratio = 0.81
- Same deficit found in Bremsstrahlung
 - Points to similar experimental error in both measurements

Target uncertainties

- At **28**k (for which Target is optimised), NPoT error is ~5% (cf $\gamma\gamma$ PhysRevD.107.012008)
- Target thickness 97 μ m average, with 1 μ m roughness
- Graphitised strips 5-10 μ m thick per side \Rightarrow 10-20 μ m total
- Graphitised strips reduce Target density from 3.515 g/cm³ to 3.2 g/cm³

Cross section history

DIME

- In 1959, group at SLAC measure the Bhabha cross-section at beam energy 200 MeV, to test the Dirac nature of e^+/e^-
- Found $\sigma(e^+e^- \rightarrow e^+e^-) = (4.40 \pm 0.45) \times 10^{11}$ pb, 13% deficit compared to theory
- "This difference cannot be interpreted until radiative corrections to the theory have been evaluated."

LEP measurements

- Searching for internal structure of electron
- Table refers to L3 at LEP
- Luminosity measurement was small angle Bhabha ⇒ table implies: assuming no new physics at small angles, wide angle scattering also agrees with SM

$\sqrt{s'}$ [GeV]	$\langle \sqrt{s'} \rangle$ [GeV]	N _{ee}	$\sigma_{\rm ee} \pm ({\rm stat.}) \pm ({\rm syst.}) [{\rm pb}]$	$\sigma_{\rm ee}^{\rm Born}$ [pb]
< 60	52.0	152	449.4 ± 35.1 ± 20.2	423.7
60 - 68	64.5	153	$258.3 \pm 23.5 \pm 12.5$	285.1
68 - 76	72.5	335	$231.5 \pm 13.2 \pm 7.4$	238.2
76 - 82	79.2	594	$235.5 \pm 9.3 \pm 5.5$	223.9
82 - 85	83.7	575	$224.0 \pm 10.6 \pm 5.9$	246.0
85 - 87	86.1	622	$300.0 \pm 12.6 \pm 8.1$	297.6
87 - 92	88.3	169	$483.9 \pm 37.1 \pm 13.2$	471.5
92 - 105	96.9	36	$117.6 \pm 16.9 \pm 8.3$	101.4
105 - 130	118.4	68	$76.1 \pm 7.8 \pm 3.7$	63.5
130 - 160	148.2	70	$34.0 \pm 5.0 \pm 2.3$	41.3
160 - 175	167.1	82	$33.5 \pm 3.6 \pm 2.1$	32.5

Data collected

- Collected $\sim 10^{10}$ PoT per point at:
 - 47 points around X17 resonance
 - 5 points below resonance
 - 1 point above resonance
- Using kinematic relation between E_γ and θ_γ
 -> very good signal-background separation

le (MeV

Expected limits

