
Towards a hybrid quantum

operating system

30th October 2023, ML_INFN

Andrea Pasquale on the behalf of the Qibo collaboration

Table of contents

1. What is Quantum Computing?

2. A snapshot of Quantum Machine Learning

3. Introducing Qibo

4. Quantum Machine Learning examples using Qibo

5. Monte Carlo event generator using Quantum GAN

6. Determining the proton content with a quantum computer

7. Probability density function determination using adiabatic quantum annealing

8. Introducing Qibolab

9. Introducing Qibocal

10. Outlook

What is Quantum Computing?

“Nature isn’t classical dammit, and if you want to make a simulation of Nature you better make it

quantum mechanical, and by golly it’s a wonderful problem because it doesn’t look so easy.”

Richard Feynman

Quantum Superposition

Compared to classical bits which can be represented by a

single state (0 or 1), quantum bits can be prepared in any

superposition of or .

where .

In the case of a system with two qubit we obtain the

following representation:

with a similar normalization condition:

∣0⟩ ∣1⟩

∣ψ⟩ = α ∣0⟩ + β ∣1⟩

α, β ∈ C : ∣α∣ +2 ∣β∣ =2 1

∣ψ⟩ = α ​ ∣00⟩ +00 α ​ ∣01⟩ +01 α ​ ∣10⟩ +10 α ​ ∣11⟩11

​ ∣α ​∣ =
i,j=0,1

∑ ij
2 1

Quantum Entanglement

In QC we can extract correlations between different qubits through entanglement.

For example if we consider the following state :

whenever we measure for the first qubit also the second one will be measured in and the same goes for .

[1]

∣Φ ⟩ =+
​

​2

∣00⟩ + ∣11⟩

∣0⟩ ∣0⟩ ∣1⟩

1. This state is known as Bell state, an example of maximally entangled state.

How to modify the state of a Qubit?

Being a quantum system qubits evolve over time

through unitary operators .

Maintaining an analogue to classical quantum we can

represent the following evolution as a small quantum

circuit:

which we call quantum circuit.

Contrary to classical circuit only reversible gates can be

used in quantum circuits

∣ψ⟩
U ​i

∣ψ ⟩ =′ U ​U ​ ∣ψ⟩1 2

Quantum circuits

A quantum circuits with more than one qubit can be represented as:

Exponential scaling

All the possible initial states for a system of 3 qubits are , in fact a generic unitary for this system is matrix.

Increasing the number of qubits leads to exponential scaling of the system more expressivity!

23 8 × 8

⇒

A snapshot of Quantum Machine

Learning

Variational Quantum Circuits

How can we encode information in a quantum circuits?

Variational Quantum Circuit: quantum circuits with parametrized gates.

Observation: We can use the Variational Quantum Circuits as as a neural network.

Rational

Using Variational Quantum Circuits we can define a

Variational Quantum Computer!

1. we want a quantum circuit to approximates

some law .

2. executing we use a variational quantum

state to reach the solution

3. Solovay-Kitaev theorem: the number of gates

needed by to represent with precision is

, where .

U(θ)
V

U(θ)

U V δ

O(log δ)c −1 c < 4

ML workflow for QML

Now we can treat a VQC as a neural network in order to optimize the parameters through back-propagation.

Why QML?

shallow models thanks to superposition and entanglement

map problems into Hilbert’s spaces loads to high expressivity

exploit QC sub-routines to speed-up classical algorithms (e.g. using Grover)

physical advantages when dealing with combinatorial optimization (quantum annealing)

Introducing Qibo
Open-source full stack API for quantum simulation, hardware control and calibration

Why do you need a framework?

Write solution using High
Level code

Simulate on Classic Hardware

CPU GPU Multi GPU

High Performance

Execute on Quantum
Hardware

Different
technologies

Need for calibration Error Correction

QC or QML problem

Is it possible to create from scratch a framework for all of this?

Qibo: a brief overview

Qibo Language API

Quantum annealing

Quantum circuits

Implementation

Simulation

Qibojit

Efficient device-agnostic

simulation with custom

operators

numpy
Lightweight, fits

well with any CPU

tensorflow

TensorFlow

implementation

simulations

Quantum

hardware

Qibocal
Characterization

Calibration

Validation

Qibolab

Control drivers

Convert gates to pulses

Transpiler

= backends

= tools

Qibosoq

 RFSoCs

Qibo documentation

https://qibo.science/

Gate set abstraction

import numpy as np

from qibo.models import Circuit

from qibo import gates, set_backend

Set driver engine
set_backend("numpy")

c = Circuit(2)

c.add(gates.X(0))

Add a measurement register on both qubits
c.add(gates.M(0, 1))

Execute the circuit with the default initial state |00>.
result = c(nshots=100)

Change backend
set_backend("qibojit")

Circuit execution with new driver
result = c(nshots=100)

Qibo features

Definition of a standard language for the

construction and execution of quantum circuits

with device agnostic approach to simulation and

quantum hardware control based on plug and

play backend drivers.

A continuously growing code-base of quantum

algorithms and applications presented with

examples and tutorials.

Efficient simulation backends with GPU, multi-

GPU and CPU with multi-threading support.

A simple mechanism for adding new simulation

and hardware backend drivers.

2009.01845

https://arxiv.org/abs/2009.01845

High performance simulation

❌ Long computational times using naive approach (Numpy or TensorFlow) for circuits with large number of qubits.

✅ We need more sophisticated tools to be able to simulate a quantum circuits with more qubits!

2203.08826

https://arxiv.org/abs/2203.08826

Benchmark

All the benchmarks are available in qibojit-benchmarks.

https://github.com/qiboteam/qibojit-benchmarks

Quantum Machine Learning

examples using Qibo

Monte Carlo event generator using Quantum GAN

What are Generative Adversarial Networks? Training

Adapt alternatively the generator and the

discriminator

Metrics

Binary cross-entropy for the loss functions:

Game theory: min-max two-player game to reach Nash

equilibrium

G(ϕ ​, z)g

D(ϕ ​, x)d

L ​(ϕ ​, ϕ ​) =G g d −E ​[logD(ϕ ​,G(ϕ ​, z))]z∼p ​(z)prior d g

L ​(ϕ ​, ϕ ​) =D g d E ​[logD(ϕ ​, x)] +x∼p ​(x)real d

E ​[log(1 −z∼p ​(z)prior
D(ϕ ​,G(ϕ ​, z)))]d g

L ​(ϕ ​, ϕ ​) ​ L ​(ϕ ​, ϕ ​)
ϕ ​g

min G g d
ϕ ​d

max D g d

A classical-quantum approach

We replace the classical generator using a VQC:

with the following encoding of the noise:

we sample according to

2110.06933

R ​ ​, =y,z
l,m (ϕ ​g z) R ​ ϕ ​z + ϕ ​y,z (g

(l) (m)
g
(l−1))

x ​ =i ⟨Ψ ​()∣ σ ​ ∣Ψ ​()⟩ϕ ​g
z z

i
ϕ ​g
z

https://arxiv.org/abs/2110.06933

Validation: 3D correlated Gaussian function

A more challenging example:

Simulation

pp → tt̄

Results with execution on hardware

Execution on Hardware

pp → tt̄

Determining the proton content with a quantum computer

In this work a parametrized Variational Quantum Circuit (VQC) is employed to fit Parton Density Functions (PDFs) :

where is the momentum fraction of the hadron carried by the parton at fixed energy scale while are

parameters of the VQC.

2011.13934

This is just one of the possible application of QC/QML in High Energy Physics!

[1]

qPDF ​(x,Q ​, θ)i 0

x i Q ​0 θ

https://arxiv.org/abs/2011.13934

Methodology

The model is created as follows:

1. Inject in VQC:

2. Extract information from QC through series of

Hamiltonians:

3. Define the function:

4. Finally we define the qPDF model for flavour at a

given as

x U(θ) → U(θ, x)[1]

Z ​ =i ​Z

j=0

⨂
n

δ ​ij

z ​(θ, x) =i ⟨ψ∣ U (θ, x)Z ​U(θ, x) ∣ψ⟩†
i

i

(x,Q ​)0

qPDF ​(x,Q ​, θ) =i 0 ​

1 + z ​(θ, x)i

1 − z ​(θ, x)i

Representation of a single layer used.

Top: Single-flavour fit for all flavours for 5 layers and 8 qubits. The red lines are the prediction of the qPDF model with simulated noise from IBM processor.

Green points are results from running on actual quantum hardware from IBM. Bottom: Fit results for the gluon and the u and s quarks. qPDF is able to reproduce

the features of NNPDF3.1. We now see this is also true when the fit performed by comparing to data and not by comparing directly to the goal function. The

differences seen at low-x can be attributed to the lack of data in that region.

Probability density function determination using adiabatic
quantum annealing

The goal of this work is to estimate the probabilitiy density function value for each element of a sample of

data using the following Quantum Adiabatic Machine Learning (QAML) strategy:

encoding the CDF values inoto an adiabatic evolution

translating the adiabatic Hamiltonian into a circuit callable at any time

Derivating the circuit using the parameter shift rule obtaining the PDF

2303.11346

ρ(x)
ω = {x ​} ​i i=1

N ​data

F (x)

C τ

[1]

1. The Parameter Shift Rule (PSR)[https://arxiv.org/abs/1905.13311] is an algorithm to compute the derivative

of specific quantum circuits which is hardware compatible

https://arxiv.org/abs/2303.11346
https://arxiv.org/abs/1905.13311

Model regression with QAML

Given a one-dimensional function we can choose

two Hamiltonians and such that we have

 and . Therefore we need to

find a time-dependent Hamiltonian such that

We can create a parametric model for this Hamiltonian by

using quantum annealing with a parametric scheduler:

We can then use standard ML tools to train by

optimizing the parameters in the scheduling .

f(t)
H ​0 H ​1

f(t ​) =0 ⟨H ​⟩0 f(t ​) =1 ⟨H ⟩1

H(t)

⟨H(t)⟩ = f(t)

H(t) = [1 − s(t, θ)]H ​ +0 s(t, θ)H ​1

H(t)
θ s(t, θ)

Example of initial and final state of the algorithm. The Ntrain blue points are the

training set selected from a gaussian mixture sample, whose empirical CDF is

represented by the black line. The random initialization of the adiabatic evolution

leads to the initial sequence of energies (yellow line). After a training time, the

evolution is closer to the training set (red line).

Translation of Hamiltonian into derivable

Circuit

Sketch of the algorithm

1. Diagonalization of each

2. Take the limit

3. Rewrite circuit as compositon of rotations and

apply PSR

H ​j

C ​ =n ​e =
j=0

∏
n

idτH ​j
​P ​e P ​

j=0

∏
n

j
idτD ​j

j
−1

dτ → 0

C(t) = P ​ exp(i ​ D ​dτ)P ​t ∫
0

t/T

j 0
−1

PDF(t) = PSR⟨C(t) ZC(t)⟩†

Validation

Introducing Qibolab
Quantum control for self-hosted QPUs using Qibo

Motivation I: Gate to Pulse conversion

Usually a quatum computer will be able to produce only a few gates called native gates through a specific series of

pulses generated by dedicated instruments. A physical implementation of a quantum gate requires the conversion

of a matrix to a sequence of microwave signals:

It can be shown that any arbitrary single qubit can be written in terms on native gates and :

This proof can be generalized for multi-qubit gates.

R ​X R ​Z

U ​(θ, ϕ, λ) =3 ​ ​ →(
cos ​2

θ

e sin ​

iϕ
2
θ

−e sin ​

iλ
2
θ

e cos ​

i(ϕ+λ)
2
θ) R ​(ϕ)R ​(−π/2)R ​(ϕ)R ​(π/2)R ​(ϕ)Z X Z X Z

Motivation II: Circuit transpilation

Usually a quantum computer will have a specific connectivity:

To be able to execute arbitrary circuits we need to rewrite the circuit in a way that matches the topology of the

specific quantum devices. Therefore we need also all the tools to be able to perform these graph manipulations

which usually we refer to as transpiler.

Qibolab API

Some of the key features of Qibolab are:

Platform API: support custom allocation of

quantum hardware platforms/ lab setup.

Drivers: support commercial and open-source

firmware for hardware control

Pulse API: provide a library of custom pulses for

execution through instruments

Quantum circuit deployment: seamlessly deploys

quantum circuit models on quantum hardware

Qibolab

Pulses

Transpiler

Drivers

Qblox

QM

Zurich

RFSoC

Qibosoq

2308.06313

2310.05851

https://arxiv.org/abs/2308.06313
https://arxiv.org/pdf/2310.05851

Pulse API example

from qibolab import create_platform

from qibolab.pulses import ReadoutPulse, PulseSequence

Define PulseSequence
sequence = PulseSequence()

Add some pulses to the pulse sequence
sequence.add(ReadoutPulse(start=0,

 amplitude=0.3,

 duration=4000,

 frequency=200_000_000,

 shape='Gaussian(5)'))

Define platform
platform = create_platform("tii1q_b1")

Platform setup
platform.connect()

platform.setup()

platform.start()

Executes a pulse sequence.
results = platform.execute_pulse_sequence()

platform.stop()

platform.disconnect()

Drivers implemented

Currently Qibolab supports the following drivers:

Qblox

Quantum Machines

Zurich Instruments

RFSoC (based on Qick)

We also support local oscillators

RohdeSchwarz SGS100A

ERASynth

Qibolab

https://github.com/qiboteam/qibolab

Introducing Qibocal
Quantum calibration and characterization using Qibo

Motivation

Let’s suppose the following:

1. We have a QPU (self-hosted).

2. We have control over what we send to the QPU.

3. We know how to convert quantum circuits to pulses.

Can I trust my results? NO!

Characterization and calibration are an essential step to properly operate emerging quantum devices.

Calibration of RX pulse amplitude through a Rabi experiment through Qibocal.

Qibocal API

Qibocal key features:

Automation of calibration protocol

Declarative inputs using runcards

Generation of HTML reports

API to run protocols directly in python

Qibocal

qq auto

qq acquire

qq fit

qq upload Share your
results

Analyze your
data

Acquire data for
your protocols

Automated
protocols
execution

2303.10397

https://arxiv.org/abs/2303.10397

Qubit characterization

 Hardware
Characterization

Single Qubit Routines

Gate Set Characterization
Standard Randomized

Benchmarking

Low Level Characterization

Resonator Characterization

Resonator Spectroscopy

Resonator Punchout

Resonator Flux Dependence

Qubit Characterization
Qubit Spectroscopy

Qubit Flux Dependence

Rabi Oscillations

Ramsey
Standard

Detuned

T1 & T2

Single-shot classification

AllXY & Drag Pulse Tuning

Flipping

Dispersive Shift

Readout Characterization
Fidelity

QND-ness

Readout Frequency Optimization

Fast Reset Test

Time of Flight Readout

Two Qubits
Interactions

Chevron

Tune Landscape

Outlook

We have presented Qibo, a simple full stack API capable

of

Deploying QML algorithms:

Simulating large circuits in an efficient way: qibojit

Deploying circuits in self-hosted QPUs: qibolab

Calibrating self-hosted QPUs: qibocal

Why should you choose Qibo?

Publicly available as an open source project

Community driven effort

Specifically designed for self-hosted QPUs

https://qibo.science/qibo/stable/code-examples/applications.html#quantum-machine-learning
https://github.com/qiboteam/qibojit
https://github.com/qiboteam/qibolab
https://github.com/qiboteam/qibocal

Collaborators

Thanks for listening!
Questions time.

