Measurement-induced phase transitions in quantum circuits

Lorenzo Piroli

University of Bologna

Genova Nov 15, 2023

This talk

LP, Y. Li, R. Vasseur, A. Nahum, PRB 107, 224303 (2023)

M. Fava, LP, T. Swann, D. Bernard, A. Nahum, arXiv:2302.12820 [Accepted PRX]

Main interests

Many-body physics out of equilibrium

Quantum information & quantum simulation

Tensor networks

Quantum circuits & cellular automata

Low-dimensional quantum field theory (Integrability, CFT)

Cold atoms

Quantum chaos & random-Matrix theory

This talk

LP, Y. Li, R. Vasseur, A. Nahum, PRB 107, 224303 (2023)

M. Fava, LP, T. Swann, D. Bernard, A. Nahum, arXiv:2302.12820 [Accepted PRX]

Main interests

Many-body physics out of equilibrium

Quantum information & quantum simulation

Tensor networks

Quantum circuits & cellular automata

Low-dimensional quantum field theory (Integrability, CFT)

Cold atoms

Quantum chaos & random-Matrix theory

- Renewed interest from physics of ultra-cold atoms:
 - large-number of atoms confined in arbitrary geometries and effective dimensions
 - ideal isolation and control of the system parameters
 - real-time dynamics accessible to high precision

• Non-perturbative problems & hard to study numerically

- Non-perturbative problems & hard to study numerically
- Entanglement emerged as organizing principle
- Define reduced state $\rho_A = \operatorname{tr}_B \left[|\psi\rangle\langle\psi| \right]$
- Entanglement entropies

$$S_A^{(n)}[\rho] = \frac{1}{1-n} \log[\operatorname{tr}(\rho^n)]$$

$$S_A[\rho] = -\operatorname{tr}(\rho \log[\rho])$$

$$|\psi\rangle \in \mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

• They quantify quantum correlations, and answer the question:

"how far is $|\psi\rangle$ from a (classical) product state"?

$$|\psi_0\rangle = |\phi_0\rangle \otimes \cdots \otimes |\phi_0\rangle$$

- Entanglement key ingredient for exotic quantum effects
- It makes quantum dynamics hard to simulate classically

- Entanglement key ingredient for exotic quantum effects
- It makes quantum dynamics hard to simulate classically
- Ex: "quantum quench"

$$\hat{H} = \sum_{j} \left[-J \left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1} + \text{ h.c. } \right) + \frac{U}{2} \hat{n}_{j} \left(\hat{n}_{j} - 1 \right) + \frac{K}{2} \hat{n}_{j} j^{2} \right]$$

(1) Preparation

$$|\psi(t=0)\rangle = |\dots 10101\dots\rangle$$

Trotzky et al. Nature Physics (2012)

- Entanglement key ingredient for exotic quantum effects
- It makes quantum dynamics hard to simulate classically
- Ex: "quantum quench"

- Large-scale dynamics simulable for low entanglement via tensor-network methods
- Bottleneck: "Entanglement barrier"

Calabrese & Cardy, PRL 96 (2006)

- What if we had a quantum computer?
- Direct access to quantum dynamics via Trotter-Suzuki decomposition

Implementation of Digital Quantum Simulation

Feynman, 1982

 Remarkable recent progress in platforms for quantum simulation: cold & Rydberg atoms, trapped ions, superconducting circuits

Most advanced experiments in analog quantum simulation
 J. Daley et al., Nature (2022)

 Digital quantum simulation ⇒ greater control and versatility, but experimental research is at an early stage

- Noisy-Intermediate-Scale-Quantum (NISQ) era
 - J. Preskill, Quantum 2 (2018)

NISQ physics already opens new avenues for fundamental research

NISQ physics already opens new avenues for fundamental research

 Discrete dynamics with new features compared to Hamiltonian evolution:
 What new phases and universal behavior in NISQ platforms?

- 2. New paradigm for many-body physics out of equilibrium
- Minimally-structured models to study hard questions in many-body physics
- Implementation feasible in NISQ devices

NISQ physics already opens new avenues for fundamental research

 Discrete dynamics with new features compared to Hamiltonian evolution:
 What new phases and universal behavior in NISQ platforms?

- 2. New paradigm for many-body physics out of equilibrium
- Minimally-structured models to study hard questions in many-body physics
- Implementation feasible in NISQ devices

→ This talk: focus on class of stat.-mech. problems arising in this context

Measurement-induced phase transitions

: unitary gate
$$U_{j,j+1} = e^{-ih_{j,j+1}\tau}$$

: projective measurement

$$P_{\alpha} = |\alpha\rangle\langle\alpha|$$

•
$$\mathcal{H} = \mathbb{C}^q \otimes \cdots \otimes \mathbb{C}^q$$

$$\mathbb{C}^{q+1} = \operatorname{span}(\{|0\rangle, |1\rangle, \dots |q\rangle\})$$

• Born's rule $\operatorname{prob}(\alpha) = \langle \psi(t) | (|\alpha\rangle \langle \alpha|_j) | \psi(t) \rangle$

Each qubit measured randomly, with a rate (probability) P

Each qubit measured randomly, with a rate (probability) P

Unitary limit

Zeno limit

$$S(t) = -\text{Tr} \left\{ \rho_A(t) \log \left[\rho_A(t) \right] \right\}$$

$$\rho_A(t) = \text{Tr}_B \left[|\Psi(t)\rangle \langle \Psi(t)| \right]$$

Skinner, Ruhman, Nahum, PRX (2019) Li, Chen, Fisher, PRB 98, (2018)

Experimentally probed in point-of-principle experiments

 Measurement histories define quantum trajectories

$$\mathcal{E} = \{ |\psi(t, \{\alpha_j\}_j)\rangle, \operatorname{prob}(\{\alpha_j\}_j) \}$$

Dynamics of averaged density matrix is dephasing

$$\rho \mapsto \mathcal{E}_D^{(j)}[\rho] = \sum_{\alpha} {}_{j} \langle \alpha | \rho | \alpha \rangle_{j} \otimes | \alpha \rangle \langle \alpha |_{j}$$

- Drives locally system towards infinite-temperature
 ⇒ no competition with unitary dynamics
 - ⇒ transition not detected by local observables

 Example of new universal behavior beyond conventional dynamical phase transitions

 Recent work aimed at characterizing phenomenology of the transition (critical exponents, order parameters, etc.)

- This talk:
 - analytic predictions for simplest type of transition [Fava, LP, Swann, Bernard, Nahum, PRX (2023)]
 - enriched phenomenology via adaptive measurements
 [LP, Li, Vasseur, Nahum, PRB (2023)]

Non-interacting dynamics

$$\sum_{ij} J_{ij}(t)\hat{\gamma}_i\hat{\gamma}_j$$

$$\{\hat{\gamma}_i, \hat{\gamma}_j\} = \delta_{ij}$$

$$\mathbb{E}\left[J_{i,j}(t)J_{k,l}(t')\right] = J^2\delta(t - t')\delta_{ik}\delta_{jl}$$

- Measure fermionic local parity $\hat{\gamma}_{2j}\hat{\gamma}_{2j+1}$, $\hat{\gamma}_{2j+1}\hat{\gamma}_{2j+2}$ with rates $\Gamma_1,\Gamma_2=\Gamma(1\pm\Delta)$
- Simple model, but monitored dynamics non-trivial
- Numerical evidence suggests entanglement transition from area-law phase to non-trivial phase

 We provide analytic predictions based on mapping to stat. mech. problem [Bao, et al. Ann. Phys. (2021); Jian, et al. arXiv:2302.09094]

Basic idea:

- map space-time pattern to 2D static disordered fermions
- the problem can be tackled using replica trick developed for Anderson localization problem

 for large space-time scales, develop a field theoretical description in terms of non-linear sigma model We provide analytic predictions based on mapping to stat. mech. problem [Bao, et al. Ann. Phys. (2021); Jian, et al. arXiv:2302.09094]

Replica limit arising due to

$$S_{n,A}[|\psi\rangle] = \frac{1}{1-n} \log \operatorname{Tr}_A(\rho_A^n)$$
$$\log x = \lim_{m \to 0} (x^m - 1) / m$$

• Bipartite entanglement entropy mapped to partition function for a matrix field $Q \in SO(N)$

$$\mathcal{S}[Q] = \frac{1}{2g_B} \int dx dt \operatorname{Tr} \left[\frac{1}{v} \partial_t Q^T \partial_t Q + v \partial_x Q^T \partial_x Q \right]$$

N: number of replicas.

- Same description as Anderson transition
- Physical predictions obtained in replica limit $N \to 1$ because of Born probabilities
- We obtain asymptotic exact prediction based on RG analysis

$$\frac{\mathrm{d}g}{\mathrm{d}\ln L} = \frac{1}{8\pi}(N-2)g^2 + O\left(g^3\right)$$

Non-trivial phase:

$$S_L(\infty) \sim \frac{1}{48} (\ln L)^2$$

 Trivial phase: entanglement area law

$$S_L(\infty) \sim O(1)$$

 Transition out of the non-trivial phase driven by proliferation of vortices, but different from Kosterlitz–Thouless

⇒ new universality class!

- Simplest example of universal behavior made possible by quantum-circuit setting
- Wide phenomenology, depending on unitary operations and measurement process
- Our work: generalize measurements via feedback operations, depending on measurement outcome
- Simplest example: local resetting measurements

 - $\begin{cases} \bullet & \text{measure qubit } k \\ \bullet & \text{if outcome } \alpha = 0 \text{, do nothing} \\ \bullet & \text{if outcome } \alpha \neq 0 \text{, flip the spin} \end{cases}$

• Resetting described by Kraus operators $M_{lpha}=|0\rangle\langle\alpha|$

Choose block-diagonal gates

$$U_{j,j+1} = \begin{pmatrix} 1 & 0 \\ 0 & W \end{pmatrix} \Rightarrow U_{j,j+1} |00\rangle_{j,j+1} = |00\rangle_{j,j+1}$$

The dynamics features absorbing-state

$$|\mathbf{0}\rangle = |0\rangle \otimes |0\rangle \otimes \cdots \otimes |0\rangle$$

fixed by gates and measurements

 We expect absorbing-state transition detected by orderparameter

$$n(t) = \frac{1}{L} \sum_{j=1}^{L} \text{Tr} \{ \mathbb{E}[\rho(t)] \mathcal{P}_j \}$$
$$\mathcal{P}_j = 1 - |0\rangle\langle 0|_j$$

$$\left\{\begin{array}{l} p < p_c : \text{active phase} \quad n_p \equiv \lim_{t \to \infty} \lim_{L \to \infty} n(t) > 0 \\ \\ p > p_c : \text{inactive phase} \quad n_p = 0 \end{array}\right.$$

- Clearly $p_c^{\mathrm{ent}} \leq p_c^{\mathrm{abs}}$; can the transitions coincide?
- Does feedback modify the universality class of entanglement MIPT?

- Clearly $p_c^{\mathrm{ent}} \leq p_c^{\mathrm{abs}}$; can the transitions coincide?
- Does feedback modify the universality class of entanglement MIPT?
- Our work:
 - transitions generically distinct and unrelated
 - they only coincide in ``semiclassical limit''

Basic idea: resetting measurements act as effective cuts in 2D space-time network

Absorbing-state transition coincides with connectivity transition

- Entanglement ∼ number of links connecting the cluster
- Can be studied exploiting standard results in stat. mech.

- Define red bonds as link that disconnect a percolating cluster
- At criticality

$$N_{\rm red}(au) \sim au^{1/
u_{\parallel}}$$

Huber, Jensen, Sneppen, PRE (1995)

$$\xi_{\perp} \sim |p - p_c^{\text{abs}}|^{-\nu_{\perp}} \quad \nu_{\perp} \simeq 1.097$$

$$\xi_{\parallel} \sim |p - p_c^{\text{abs}}|^{-\nu_{\parallel}} \quad \nu_{\parallel} \simeq 1.73$$

 Near criticality, we can apply this result for a space-time region of dimensions

$$\ell = \xi_{\perp} \sim |p - p_c^{\text{abs}}|^{-\nu_{\perp}} \qquad \tau = \xi_{\parallel} \sim |p - p_c^{\text{abs}}|^{-\nu_{\parallel}}$$

• Using simple estimates: if

$$|p - p_c^{\rm abs}| \ll 1/q \,,$$

the system is in the area-law phase

- ⇒ close to DP transition, quantum trajectories are disentangled
- We recover that two transitions only coincide in the limit $\,q o \infty$
- Results supported by extensive numerics in simple models

Outlook

- Entanglement phase transitions as new instances of universality out of equilibrium
- Many qualitative and quantitative questions remain open:
 - Characterization of the transition in interacting models
 - Can we efficiently probe the transition?
- More generally, many fundamentally interesting questions are emerging from ``digital quantum physics''
- Important new synergies between groups in quantuminformation theory, stat.-mech. and many-body physics

My project QUANTHEM awarded an ERC starting grant!

Research areas:

- Quantum information theory
- Quantum simulation
- Many-body physics out of equilibrium

Established by the European Commission

New postdoc positions at the University of Bologna starting 2024!

QUANTHEM hosted by and interacting with Quantum group in Bologna: E. Ercolessi, P. Pieri, T. Calarco

Thank you for your attention!