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Overview

1. Background: a short introduction on MRI

2. AI-based MR image reconstruction

3. DeepMR framework



Magnetic Resonance Imaging



Magnetic Resonance Imaging

Versatile imaging technique based on the interaction of nuclear spins within the 

human body with magnetic fields

✓ Excellent soft tissue contrast

✓ It is non invasive! (non-ionizing radiation)

− Relatively slow due to the characteristics of MR signal encoding
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Can AI help here?
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undersampled data are available
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available

Neither are available (single 
subject)



Supervised DL models

Ground truth image is available → can compute loss both in measurement and image space

𝐹𝐻 AI

AI 𝐹𝐻

Image restoration

K-space completion

AI 𝐹𝐻 AI Cross-domain enhancement

AI

Direct mapping

𝐹𝐻
𝐹𝐻, 
AI

𝐹𝐻, 
AI

Unrolled optimization

Javier Montalt-Tordera, Vivek Muthurangu, Andreas Hauptmann, Jennifer Anne Steeden, Machine learning in Magnetic Resonance Imaging: Image reconstruction, Physica Medica, Volume 83, 2021, Pages 79-87, https://doi.org/10.1016/j.ejmp.2021.02.020.



Image restoration

𝐹𝐻 AI
Can rely on rich body of
literature on CNN-based
denoising (also from non-
medical context) – e.g., U-Net

Aliasing should have noise-like
pattern → does not apply well to
common undersampling artifact

Kofler et al., (2020)



K-space completion

𝐹𝐻 AIAI 𝐹𝐻

Cheng et al., (2018)

More closely related to the
natural representation of MR
data (k-space)

More complicated data pre-
processing and overall
architecture



Direct mapping

AI

Can capture (and correct)
artifacts related to system
imperfections

High memory footprint – limited
to low dimensional data

Zhu et al., (2018)



Cross-domain enhancement

𝐹𝐻 AIAI 𝐹𝐻 AI

Improved performances by
exploiting highly coupled
information between the image
and k-space domains

Increased complexity

Eo et al., (2018)



Unrolled optimization

𝐹𝐻
𝐹𝐻, 
AI

𝐹𝐻, 
AI

Require less data for training

Involve potentially inefficient
conventional image encoding
operators

Aggarwal et al., (2018)



Self-/un- supervised DL models

Ground truth image not available → can compute loss both in measurement space only

In the limit case of 𝑁𝑡𝑟𝑎𝑖𝑛 = 1, training is performed during reconstruction itself

ො𝑥 = argmin𝑥 𝐹 𝑥 − 𝑦 2
2 + (𝑥)

• Example: PnP reconstruction

Pre-trained
denoiser
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Aim 1:

• Development of an open-source framework for development of 
advanced qMR reconstruction

• Acquisition of high-quality data for Deep Learning based qMR
reconstruction

Aim 2:

• Application to real-world MR acquisition (healthy + patients), either
retrospectively on previously acquired data (MR Fingerprinting) and 
prospectively (QSM)

PREDATOR project

Aim 3:

• Implement on-line reconstruction on MR scanner
• Measure scalability of the algorithms on low-end hardware 

(consumer-level PCs, single-board computers) for low-income
countries

Si
gn

al
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a.
u

.)

time frame

time frame
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schedulers…
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Efficient Bloch simulator
Pytorch implementation based on Extended Phase Graphs formalism

• Effect of RF pulse and spin relaxation is represented by matrix-matrix product operations

• Effect of gradient is represented in the Fourier space as a shift between different (discrete) states representing

different dephasing orders



Efficient Bloch simulator
Pytorch implementation based on Extended Phase Graphs formalism

• Effect of RF pulse and spin relaxation is represented by matrix-matrix product operations

• Effect of gradient is represented in the fourier space as a shift between different (discrete) states representing

different dephasing orders

Features:

• Include all main MR related parameters (relaxation, diffusion, chemical exchange, magnetization transfer,

system imperfections)

• Highly parallelized (both on CPU and GPU)

• Supports gradient calculation via forward automatic differentiation (enable backpropagation in NN training,

efficient parameter fitting and optimization of acquisition parameters)



Efficient Bloch simulator

Validation:

• Acquisition: Variable Flip Angle unbalanced SSFP with 1000 

echoes (TR=8.5ms)

• Virtual Object: Three representative tissues:

• White Matter (T1=500ms; T2=70ms) 

• Gray Matter(T1=833ms; T2=83ms)

• CSF (T1=2569ms; T2=329ms)

Benchmark: comparison of computations time against sycomore

(state-of-the-art C++ implementation) on a batch of tissue species

of size 65536

Flip angle variation

Sequence scheme

RF

Spoiler

Readout

RF

time

rf

Gz

ADC

TR



Efficient Bloch simulator

No differences compared to 
the reference implementation

• : reference implementation

‐ : deepmr implementation



Efficient Bloch simulator

Up to one-order of magnitude of speed-up 
(on GPU)



Efficient encoding operator



Efficient encoding operator

𝑦 = 𝑃𝐹𝑀 𝑥 + 𝑛

P: sampling operator
F: Fourier Transform
M: Bloch response

PF: Non-Uniform Sparse FFT
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Efficient encoding operator

𝑦 = 𝑃𝐹𝑀 𝑥 + 𝑛

M is often replaced with a projection on a linear subspace for speedup

→ jointly perform P, F and M!

P: sampling operator
F: Fourier Transform
M: Bloch response
PF: Non-Uniform Sparse FFT



Efficient encoding operator

𝑦 = 𝑃𝐹𝑀 𝑥 + 𝑛

M is often replaced with a projection on a linear subspace for speedup

→ jointly perform P, F and M!

Implementation: Pytorch + Numba

• Can operate both on CPU and GPU

• Efficient backpropagation noticing that, for linear operators, backward pass is equivalent to adjoint operator



SVD

Validation:

• Acquisition: Fast Spin-Echo with 1000 echoes and golden-
angle incremented 2D radial sampling (100 spokes / echo)

• Virtual Object: Shepp-Logan phantom with three regions:

• White Matter (T2=70ms) 

• Gray Matter(T2=83ms)

• CSF (T2=329ms)

• Basis determination: SVD of an ensemble of 300 signal 
evolution (T2:1 – 329ms)

• K-Space data: calculated via forward NUFFT from torchkbnufft

Benchmark: comparison of both forward and adjoint NUFFT 
computations time against torchkbnufft implementation

Trajectory

Basis determination

Signal equation

Efficient encoding operator
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No differences compared to 
the reference implementation

Efficient encoding operator



One order of magnitude of speed-up 
compared to the reference 

implementation 

Efficient encoding operator
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qMR database creation

M2. Creation of training qMRI database of healthy volunteers (31 Dec 2023): Generation of sub-millimetric T1, T2, T2*/susceptibility maps of at least 10 subjects.

Protocol

Sequence
Type

Parameter FA [deg] RF phase 
inc [deg]

TE [ms] TR [ms] FoV [mm] Resolution 
[mm]

Acceleratio
n factor 

Scan
Time 
[min:sec]

SPGR T1 3, 11, 28 quadratic 3.3 8.5 224x224x160 0.8 iso 4 9:06

bSSFP T2 10, 20, 30, 
35

0, 180 2 4 224x224x160 0.8 iso 4 6:00

ME-GRE T2*, B0, 
QSM

15 quadratic 3.9, 8.5, 
13.1, 17.7

30 224x224x160 0.8 iso 4 5:06

Protocol also include a B1+ calibration scan (Bloch-Siegert) (whole-brain, 4x4x5 mm3 resolution)

Dataset

• 1 healthy volunteer (Male, 34 years old)



qMR database creation

M2. Creation of training qMRI database of healthy volunteers (31 Dec 2023): Generation of sub-millimetric T1, T2, T2*/susceptibility maps of at least 10 subjects.

Good geometrical 
quality and 
reasonable 
quantification.

To-Do: improve 
accuracy and 
precision of fitting



Conclusions

• AI-based approaches have great potential in accelerating MR acquisition and 

reconstruction

• The DeepMR framework will contribute to the field providing easy-to-use, 

extensible and efficient tools to develop novel reconstruction approaches



Thank you for your attention!

Pisa
October 16 2023


