Deep inverse proplems —a novel approach
to MRI Image reconstruction
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1. Background: a short introduction on MR

2. Al-based MR image reconstruction

5. DeepMR framework




Magnetic Resonance Imaging



Magnetic Resonance Imaging

Versatile imaging technigue based on the interaction of nuclear spins within the

NnuMman body with magnetic fields

v Excellent soft tissue contrast

v Itis non invasive! (non-ionizing radiation)

- Relatively slow due to the characteristics of MR signal encoding
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| Problem formulation

Direct inversion X = FH (y)

Reconstructed cauired
Image data

ng, X, Tan, Z, Scholand, N., Roeloffs, V., (2021). Physics-based reconstruction methods for magnetic resonance imaging. Philosophica



| Problem formulation
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| Problem formulation

En liNng
operator
Direct inversion ¥ =FH (y)
Reconstructed Acquired
Image data
Data consistency term Can Al help here?
)
{ |
Imagin T — 1 2
e X = argminy||F(x) — |l + E AiR;i(x)
quation
\i

)

|

Regularization term




Al-based MR reconstruction
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supervised

Both ground-truth and
undersampled data are available

Undersampled data only are
available

Selt-Supervised

Neither are available (single
subject)

Unsupervised




| Supervised DL models

GCround truth image is available » can compute loss both in measurement and image space

Direct mapping
» IMmage restoration

. ». ” D K-space completion
. ». » D » D Cross-domain enhancement

” 000 ”D Unrolled optimization




| Image restoration

Can rely on rich body of

literature on CNN-based
denoising (also  from  non-

medical context) —e.g., U-Net
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Allasing should have noise-like
oattern - does not apply well to
common undersampling artifact
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Kofler et al., (2020)




K-space completion
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Coil

More closely related to the Compression
natural representation of MR
data (k-space)

DeepSPIRIT

(N)

More complicated data pre-

processing and overall
architecture
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‘ Direct mapping N

= o

Can capture (and correct)
artifacts  related to  system
imperfections

Complex
sensor data

High memory footprint — limited
to low dimensional data

/Znu et al, (2018)




‘ Cross-domain ennancement

'mproved oerformances oy
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INncreased complexity
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| Unrolled optimization

Recursive formulation Require less data for training

t
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| Self-/un- supervised DL models

GCround truth image not available » can compute loss both in measurement space only

N the limit case of Nigin = 1, training is performed during reconstruction itself

o« Example: PnP reconstruction

Pre-trained
denoiser

£ = argming||F(x) — yll3 + (x)
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PREDATOR project

Alm T
Development of an open-source framework for development of ﬁ pgthOﬂ OGltHUb

advanced gMR reconstruction
Acquisition of high-quality data for Deep Learning based gMR O P)/TOI’Ch

reconstruction

Al 2.

« Application to real-world MR acqguisition (healthy + patients), either
retrospectively on previously acquired data (MR Fingerprinting) and
orospectively (QSM)

Alm 3.

Implement on-line reconstruction on MR scanner
Measure scalability of the algorithms on low-end hardware
(consumer-level PCs, single-board computers) for low-income

countries




DeepMR framework

Linear Operators Parametric-mapping
« FFT

e NUFFT

« \Wavelet Transform
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 Raw data loading
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NN-utils

Solvers e Pre-defined architectures
Gradient Method

Conjugate Gradient
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| Efficient Bloch simulator

Pytorch implementation based on Extended Phase Graphs formalism
« Effect of RF pulse and spin relaxation is represented by matrix-matrix product operations

« Effect of gradient is represented in the Fourier space as a shift between different (discrete) states representing

different dephasing orders




| Efficient Bloch simulator

Pytorch implementation based on Extended Phase Graphs formalism
« Effect of RF pulse and spin relaxation is represented by matrix-matrix product operations

« Effect of gradient is represented in the fourier space as a shift between different (discrete) states representing

different dephasing orders

Features:

 Include all main MR related parameters (relaxation, diffusion, chemical exchange, magnetization transfer,

system imperfections)
 Highly parallelized (both on CPU and GPU)

 Supports gradient calculation via forward automatic differentiation (enable backpropagation in NN training,

efficient parameter fitting and optimization of acquisition parameters)



| Efficient Bloch simulator

Validation:

 Acquisition: Variable Flip Angle unbalanced SSFP with 1000
echoes (TR=8.5ms)

 Virtual Object: Three representative tissues:

e  White Matter (T1=500ms; T2=70mMs)
 GCray Matter(T1=833ms; T2=83mMs)
o CSF (T1=2569ms; T2=329ms)

Benchmark: comparison of computations time against sycomore

(state-of-the-art C++ implementation) on a batch of tissue species
of size 65536

flip [deg]

Seguence scheme

time

Flip angle variation

g
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| Efficient Bloch simulator
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- deepmr implementation



| Efficient Bloch simulator

. Benchmark
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Up to one-order of magnitude of speed-up
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| Efficient encoding operator

P sampling operator
~ Fourier Transform
M: Bloch response

y — PFM(X) + n PE. Non-Uniform Sparse FFT
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‘ Efficient encoding operator

y = PFM(x) +n

M is often replaced with a projection on a linear subspace for speedup

> jointly perform P, F and M!
Implementation: Pytorch + Numba

« Can operate both on CPU and GPU

« Efficient backpropagation noticing that, for linear operators, backward pass is equivalent to adjoint operator



‘ Efficient encoding operator

Signal equation Trajectory

K-Space trajectory

Validation:

« Acquisition: Fast Spin-Echo with 1000 echoes and golden-
angle incremented 2D radial sampling (100 spokes / echo) S(TE) = exp(—E)
T2

« Virtual Object: Shepp-Logan phantom with three regions:

-100 -75 =50 -25 0 25 50 75 100

" White Matter (T2=70ms) Basis determination
 Gray Matter(T2=83ms) SVD

* CSE <T2:329 mS) Signal ensemble ‘ Low-rank subspace basis

« Basis determination: SVD of an ensemble of 300 signal
evolution (T2:1 —329ms)

« K-Space data: calculated via forward NUFFT from torchkbnufft

0.05

Benchmark: comparison of both forward and adjoint NUFFT
computations time against torchkbnufft implementation

signal magnitude [a.u.]
signal magnitude [a.u.]

0.0 1

400 600 800 1000 o 200 400 600 800 1000

# frames # frames




| Efficient encoding operator
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‘ Efficient encoding operator

Benchmark

35

Bl torch-kb-nufft
01 M nufft-torch
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One order of magnitude of speed-up
compared to the reference
implementation
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| gMR database creation

M2. Creation of training gMRI database of healthy volunteers (31 Dec 2023): Generation of sub-millimetric T1, T2, T2*/susceptibility maps of at least 10 subjects.

Protocol
Sequence Parameter | FA [deg] RF phase TR [ms] | FoV [mm] Resolution | Acceleratio | Scan
Type inc [deg] [mm] n factor Time
[min:sec]
SPGR T1 3,11, 28 quadratic 3.3 8.5 224x224x160 0.8 iso 4 9:06
bSSFP T2 10, 20,30, 0, 180 2 4 224x224x160 0.8 iso 4 6:00
35
ME-GRE T2%*, BO, 15 guadratic 3.9, 8.5, 30 224x224x160 0.8 iso 4 5:06
Qsm 13.1,17.7

Protocol also include a Bl+ calibration scan (Bloch-Siegert) (whole-brain, 4x4x5 mm? resolution)

Dataset

* 1 healthy volunteer (Male, 34 years old)




MR database creation

M2. Creation of training gMRI database of healthy volunteers (31 Dec 2023): Generation of sub-millimetric T1, T2, T2*/susceptibility maps of at least 10 subjects.

2500 350 ] 10
T1 [ms]
r 160
300
2000 - 140
Cood geometrical
120 quality and
reasonable
1500
1o quantification.
- To-Do: improve
1000
accuracy and
= orecision of fitting
40
500
20
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| Conclusions

« Al-based approaches have great potential in accelerating MR acguisition and

reconstruction

« The DeepMR framework will contribute to the field providing easy-to-use,

extensipble and efficient tools to develop novel reconstruction approaches




Thank you for your attention!
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