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STT-EVENT CLASSIFICATION WITH CNNS

• Applying ML to the digitized STT data for event 
classification.

• Strategy inspired by a NO𝝊A article (1604.01444): 
CNN which combines XZ and YZ views, as in STTs.

• So far using only STT hits: final model could include 
timing and calorimeter clusters.

• CNNs would allow classification based on topology.

• Dataset of 𝜈!-CC interactions with vertices in 
the STT, separated in:

• Deep Inelastic Scattering (DIS) events (44%).

• Resonant Scattering (RES) events (38.2%).

• Quasi-Elastic Scattering (QES) events (17.2%).
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https://arxiv.org/abs/1604.01444


PROCESSING WORKFLOW

• The edep-sim MC files were processed with the sand-reco Digitize module to get the digitized hits.

• Digitized hit coordinates and 𝐸"#$ converted to 128x128 pixel image-like views.

• Extracted the genie primary interaction label from the edep-sim file.

• Final pre-processing steps are applied and saved to Numpy mem-mapped files (model input).
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PIXELATED VIEWS

• Views are saved to Pandas Dataframe 
as 128x128 pixel tensors.

• uint8 format used for more efficient 
storage: 256 𝐸!"# values in the 
[0,0.07] MeV range.

• Current pre-processing steps:

• Resizing to 80x80 pixels

• Selection cut on active pixels.

• Scaling w.r.t. 𝜇 and 𝜎

• Normalization in the [0,1] range 
required by the model
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GOOGLENET ARCHITECTURE

• Architecture based on NOvA model.

• Views are passed to parallel branches based on the 
GoogLeNet architecture.

• Inception modules extract features at different 
scales in a parallel fashion.

• The resulting features are concatenated and then 
passed to a final inception module to extract 
combined features.

• Final classification after down-sampling.

• Used the Tensorflow/Keras Python libraries.
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GOOGLENET PERFORMANCE

• Current results are not satisfactory: 
overfitting occurs since the initial epochs, 
even with high regularization.

• Multiple strategies for regularizing the 
network were tried, with no improvement.

• Alternative pre-processing procedures did 
not improve the performance either.
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• Alternative model based on the ResNet18 architecture.

• Parallel branches with four residual blocks each.

• Concatenation and convolution before final classification layer.

• Current results are not satisfactory: network is underfitting.

RESNET18 ARCHITECTURE
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input_1

InputLayer

input:

output:

[(None, 80, 80, 1)]

[(None, 80, 80, 1)]

resnet18_XZ

Functional

input:

output:

(None, 80, 80, 1)

(None, 1, 1, 512)

input_2

InputLayer

input:

output:

[(None, 80, 80, 1)]

[(None, 80, 80, 1)]
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Functional

input:

output:

(None, 80, 80, 1)
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Dropout
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input:

output:
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(None, 3)



VISUAL CHECKS
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• Tried increasing the contrast by applying 𝛾 = 0.5 
correction to the normalized views.

• Tested the performance of the GoogLeNet model on the 
dataset: results are still not satisfactory.

INCREASED CONTRAST
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CONCLUSIONS

• By visual inspection, event topologies are not well separated.

• Distributions of some potential features do not show separation. 
E.g. weighted std. of active pixels in the x and y directions.

• Alternative strategies could be explored: different architectures or features.
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