
EVENT CLASSIFICATION IN SAND
WITH DEEP LEARNING

Meeting della collaborazione DUNE-Italia

Lecce, 7/11/2023

Alessandro Ruggeri on behalf of the Nu@FNAL Bologna group

STT-EVENT CLASSIFICATION WITH CNNS

• Applying ML to the digitized STT data for event
classification.

• Strategy inspired by a NO𝝊A article (1604.01444):
CNN which combines XZ and YZ views, as in STTs.

• So far using only STT hits: final model could include
timing and calorimeter clusters.

• CNNs would allow classification based on topology.

• Dataset of 𝜈!-CC interactions with vertices in
the STT, separated in:

• Deep Inelastic Scattering (DIS) events (44%).

• Resonant Scattering (RES) events (38.2%).

• Quasi-Elastic Scattering (QES) events (17.2%).

24 24.5 25 25.5 26
310×

Z

1.6−

1.4−

1.2−

1−

0.8−

0.6−

0.4−

0.2−

310×

X

STT hits: event 17, XZ view

24 24.5 25 25.5 26
310×

Z
3−

2.5−

2−

1.5−

1−

0.5−

310×

Y

STT hits: event 17, YZ view

2

https://arxiv.org/abs/1604.01444

PROCESSING WORKFLOW

• The edep-sim MC files were processed with the sand-reco Digitize module to get the digitized hits.

• Digitized hit coordinates and 𝐸"#$ converted to 128x128 pixel image-like views.

• Extracted the genie primary interaction label from the edep-sim file.

• Final pre-processing steps are applied and saved to Numpy mem-mapped files (model input).

3

edep-sim file

Digits file
Event hits
coordinate

list

Pixelated XZ
& YZ views

RDataFrame

Uproot NumPy

Event primary
interaction labels

Pandas
Dataframe

Numpy
mmaps

Additional
processing

For each event

For each file

Saved to a Pandas
Dataframe for each MC
file.

PIXELATED VIEWS

• Views are saved to Pandas Dataframe
as 128x128 pixel tensors.

• uint8 format used for more efficient
storage: 256 𝐸!"# values in the
[0,0.07] MeV range.

• Current pre-processing steps:

• Resizing to 80x80 pixels

• Selection cut on active pixels.

• Scaling w.r.t. 𝜇 and 𝜎

• Normalization in the [0,1] range
required by the model

4

𝜈 − 𝑏𝑒𝑎𝑚 𝜈 − 𝑏𝑒𝑎𝑚

GOOGLENET ARCHITECTURE

• Architecture based on NOvA model.

• Views are passed to parallel branches based on the
GoogLeNet architecture.

• Inception modules extract features at different
scales in a parallel fashion.

• The resulting features are concatenated and then
passed to a final inception module to extract
combined features.

• Final classification after down-sampling.

• Used the Tensorflow/Keras Python libraries.

XZ-view input

Convolution
64, 7x7+2(S)

Max Pool
64, 3x3+2(S)

Convolution
64, 1x1+1(S)

Convolution
128, 1x1+1(S)

Batch
Normalization

Batch
Normalization

Max Pool
128, 3x3+2(S)

64 128 32 32
96 16

128 192 96 64
128 32

Max Pool
128, 3x3+2(S)

192 208 48 64
96 16

YZ-view input

Convolution
64, 7x7+2(S)

Max Pool
64, 3x3+2(S)

Convolution
64, 1x1+1(S)

Convolution
128, 1x1+1(S)

Batch
Normalization

Batch
Normalization

Max Pool
128, 3x3+2(S)

64 128 32 32
96 16

128 192 96 64
128 32

Max Pool
128, 3x3+2(S)

192 208 48 64
96 16

192 208 48 64
96 16

Max Pool
128, 3x3+2(S)

Dropout
(40%)

Dense Softmax
(3 units)

Convolution
1x1+1(S)

Max Pool
3x3+1(S)

Previous Layer

Convolution
1x1+1(S)

Convolution
1x1+1(S)

Convolution
3x3+1(S)

Convolution
1x1+1(S)

Convolution
5x5+1(S)

Filter
Concatenation

5

GOOGLENET PERFORMANCE

• Current results are not satisfactory:
overfitting occurs since the initial epochs,
even with high regularization.

• Multiple strategies for regularizing the
network were tried, with no improvement.

• Alternative pre-processing procedures did
not improve the performance either.

Training and validation losses

Ca
te

go
ric

al
 C

ro
ss

 e
nt

ro
py

Epoch Epoch

Ca
te

go
ric

al
 A

cc
ur

ac
y

Training and validation accuracies

Epoch

Ca
te

go
ric

al
 A

cc
ur

ac
y

Training and validation accuracies

Epoch

Ca
te

go
ric

al
 A

cc
ur

ac
y

Training and validation accuracies

Training and validation losses

Ca
te

go
ric

al
 C

ro
ss

 e
nt

ro
py

Epoch Epoch

Ca
te

go
ric

al
 A

cc
ur

ac
y

Training and validation accuracies

6

• Alternative model based on the ResNet18 architecture.

• Parallel branches with four residual blocks each.

• Concatenation and convolution before final classification layer.

• Current results are not satisfactory: network is underfitting.

RESNET18 ARCHITECTURE

7

input_1

InputLayer

input:

output:

[(None, 80, 80, 1)]

[(None, 80, 80, 1)]

resnet18_XZ

Functional

input:

output:

(None, 80, 80, 1)

(None, 1, 1, 512)

input_2

InputLayer

input:

output:

[(None, 80, 80, 1)]

[(None, 80, 80, 1)]

resnet18_YZ

Functional

input:

output:

(None, 80, 80, 1)

(None, 1, 1, 512)

Final_concat

Concatenate

input:

output:

[(None, 1, 1, 512), (None, 1, 1, 512)]

(None, 1, 1, 1024)

conv2d_21

Conv2D

input:

output:

(None, 1, 1, 1024)

(None, 1, 1, 512)

GAPL

GlobalAveragePooling2D

input:

output:

(None, 1, 1, 512)

(None, 512)

dropout

Dropout

input:

output:

(None, 512)

(None, 512)

Dense_softmax

Dense

input:

output:

(None, 512)

(None, 3)

VISUAL CHECKS

8

• Tried increasing the contrast by applying 𝛾 = 0.5
correction to the normalized views.

• Tested the performance of the GoogLeNet model on the
dataset: results are still not satisfactory.

INCREASED CONTRAST

9

CONCLUSIONS

• By visual inspection, event topologies are not well separated.

• Distributions of some potential features do not show separation.
E.g. weighted std. of active pixels in the x and y directions.

• Alternative strategies could be explored: different architectures or features.

10

GRAZIE PER L’ATTENZIONE

11

