DUNE Power over Fiber

Meeting Annuale della Collaborazione Nazionale DUNE-Italia Lecce 2023-11-07

Alessandro Andreani^{1,2}, Marco Bassani^{1,3}, Paolo Cova^{1,3}, Nicola Delmonte^{1,3}, Massimo Lazzaroni^{1,2}, <u>Danilo</u> <u>Santoro^{1,3}</u>, Valeria Trabattoni^{1,2}, Andrea Zani¹

¹INFN Sezione di Milano ²Università degli Studi di Milano ³Università degli Studi di Parma

System overview

- DC-DC boost converter: HV for SiPM bias at cold
- Power supply provided by PoC (Power optical Converter): 5 V to 7 V range
- **PWM generation** with two possible controls:
 - Inner feedback setting output voltage at nominal point (e.g. 48 V)
 - Optical input to change the setting voltage within few volts
- Analog feedback control loop circuit

Content

- DC-DC boost design
 - Performance
 - External PWM control
- Control design
- Operational Amplifier characterization for analog feedback control loop
- Conclusions

DC-DC boost prototype, version 2

- Improved input and output filters
- Optimized analog feedback control circuitry
 - Tests with external PWM control

a) DC-DC prototype top layer

b) DC-DC prototype bottom layer

DC-DC prototype results

- Output voltage at RoomT limited by the inductor series resistor. At LN2 T, it is
 possible to reach 68 V at 91% of Duty Cycle
- The efficiency at LN2 at 48 V is greater than 40%

DC-DC prototype results

Output voltage FFT measurements at 77K without EMI shield (blue) and with EMI shield (red)

Control design

Internal feedback: output voltage control at desired set point

The set point can be:

- Nominal: set at design stage and fixed throughout the entire run (standalone mode)
- External: set point adjusted through external communication (in case of failure, nominal set-point)

Control design: analog feedback circuit

Experimental results of the **output step rejection response**, with a **load change from 50 k** Ω **to 8.33 k** Ω

Vout = 48 V, Vin = 5 V, output voltage measured with AC coupling at 300 K (red trace) and at 77 K (blue trace)

Control design: external set point

- External PWM signal drove through optical fiber: external set point
- Reference level changes
- AC-coupling in case of external PWM, otherwise reference set by voltage divider

*Test with electrical connection (waveform generator)

Component characterization: OpAmps

Characterization circuit for OpAmps

- Offset voltage, quiescent current, offset and bias currents
- First test with DUT: OpAmp LMV321
- Auxiliary OpAmp: OP27G
- DUT in climate chamber with LN2 injection
- Data recovery at each temperature step
- Automatic test bench control

Characterization testbed

Data acquisition unit

• DUT in climate chamber with LN2 injection

Climatic chamber Semiconductor analyzer for quiescent Auxiliary OpAmps at current measurements ambient temperatures

Experimental results: OpAmp characterization

Future developments

- Test of DC-DC externa control through optical fiber
- Characterization of different OpAmps:
 - MCP6291
 - MCP6N11
 - LMV321
 - TLC271
 - AD8293
- Use of automated test bench for reliability tests for active and passive devices

Issues:

- Dewar with more capacity necessary
- High-rate multiplexer for data acquisition unit necessary

From laser to SiPM – Cryo-PoF setup

- GaAs laser source 808 nm;
- **Graded index multi mode optical fiber** with black plastic sheath;
- **Optical power converter**, V_{max} = 6 V, 30% efficiency in LN;
- **Cold amplifier** MiB for DUNE HD, $V_{in} = 3.3 \text{ V}$;
- DC/DC boost converter V1 INFN Mi → placed in a metallic box to reduce noise, possibility to tune SiPM bias as a function of laser power;
- Hamamatsu SiPM, 1 flexi board with 20 SiPMs in parallel.

-Cryo_Po

From laser to SiPM - Results

-Cryo_PoF

From laser to SiPM – PoF Results

$$V_{in} laser = -2.83 V$$

$$V_{bias} = 46 V - 4 V ov$$
Charge integral
$$\int \frac{1}{9} \int \frac{1$$

UNIVERSITÀ DEGLI STUDI

DI MILANO

UNIVERSITÀ

DI PARMA

17

INFN

MILANO

-Cryo_PoF

PoF vs copper cable – SNR results

__Cryo_**PoF**

SNR is calculated for each SiPM bias tested.

		SNR	
SiPM bias	Overvoltage	Copper cable	PoF
45 V	3 V	7.830	7.520
46 V	4 V	10.665	9.409
47 V	5 V	13.004	11.070

The performances of the PoF are comparable with the copper cable ones.

DC/DC boost converter

-Cryo~PoF

- $V_{in} DC/DC \rightarrow V$ output from the OPC, that is the DC/DC input ;
- $\mathbf{V_{out}} \mathbf{DC/DC} \rightarrow \mathbf{V}$ output from the DC/DC, that is the SiPMs bias voltage.

DC/DC boost converter

-Cryo_PoF

22

DUA

INFŃ

MILANO

UNIVERSITÀ

DI PARMA

