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MOTIVATIONS

• A potential backup design to the STT for the tracking system in SAND.

• The hope is to reduce complexity:

• in the mechanical design and setup, by having wider connected drift volumes kept at a lower 
pressure.

• in the number of channels, by having a smaller number of sense wires with a wider spacing.

• Physics performance would need to be comparable to that of STTs.
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INITIAL DEVELOPMENT STEPS

• The base concept: alternating field and sense wires with 
planar electrodes for field shaping and drift-volume 
separation:

• no grading wires for design simplicity

• gaps between the planar electrodes to allow for gas passage.

• First step in the design process was definition of the base 
cell configuration:

• spacing  and orientation of the wires and electrodes

• wire and electrode thicknesses and voltages.

• composition and pressure of the gas mixture

• Aiming at a simple relation between DCA and drift time: 
ideally linear.

• Toy cell implemented in Garfield++ simulation software to 
compute the Electric field, drift properties and signal 
production.
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DEFINITION OF A BASELINE MODULE

• Defined the configuration of a base cell: anode sense 
wires and cathode field wires with a 1 cm step. Cells are 
closed by grounded strips (1 cm thickness).

• Gas mixture (Ar/CO2 at 85%/15%) and voltages fixed 
aiming at sufficient gas gain (∼ 10!) and ∼constant 𝑣"#$%& 
along the wire plane.

• A chamber module consists of:

• A target layer of the required material.

• Three wire planes in a −5°,  0°,  +5° configuration with 
respect to the B-field axis.

• Reduction of L-R ambiguity and optimal resolution in the 
bending direction with most of the readout channels on 
the same side.

Field wire
𝑑! = 100 𝜇𝑚
𝑉 = −2.5 𝑘𝑉

Target layer
𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
∼ 0.5 𝑐𝑚

1 𝑐𝑚

1 𝑐𝑚

Aluminized Mylar
𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
∼ 20 𝜇𝑚
𝑉 = 0 𝑉

Signal wire
𝑑! = 25 𝜇𝑚
𝑉 = +2 𝑘𝑉

𝜈 beam

𝑔

1 𝑐𝑚

-5°-
plane

0°-
plane

+5°-
plane

𝐸 > 1 𝑘𝑉/𝑐𝑚

µ-track
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DETECTOR LAYOUT

• Size of a module is consistent with an STT one, excluding 
the TRD.

• Supermodules consisting of: 1 C-target module + 9 
C3H6-target modules.

• 8 supermodules can be fitted in the remaining SAND 
volume: 6 symmetric and 2 downstream.

• This preliminary configuration was implemented in the 
SAND simulations (thanks to G. Ingratta).

• The geometry includes updated GRAIN dimensions and 
clearances between supermodules.
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SIGNAL SIMULATIONS IN GARFIELD++

• Garfield implements algorithms for the simulation of:

• ionization patterns of charged particles (Heed model).

• charge transport with MC and RKF algorithms 
(using the latter).

• Induced signals are computed with the Shockley-Ramo 
theorem:

𝑖 𝑡 = −𝑞𝒗 ⋅ 𝑬'(𝒓)

• Signals can be convolved with a detector response 
function.

• Current issues with the simulations: 

• RKF interface with current geometry is buggy: very slow 
simulations (>20 mins for each track).

• Field must be computed at each execution.
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MAPPING OF THE DRIFT PARAMETERS

• Mapping the drift parameters (𝑡"#$%&, 𝑣"#$%&, gain, etc…) 
and the induction signals from electrons:

• to completely characterize the cell (drift parameters are 
attributes of the drift charges)

• to simulate track signals by combining single electron signals.

• Voxelized a base dector cell with 200 µm steps: 
computed the electron drift properties and signal 
induced on the sense wire at each step. Results saved to 
ROOT files.

• Both horizontal and stereo cells were mapped.

• Drift velocity and drift time maps support our design 
choice.
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DISCRETIZED SIMULATION OF SIGNALS

• In Garfield++, signals from track primary e-/ions are summed 
separately bin-by-bin.

• Response obtained by summing single e- at each point in the 
trajectory. Ions neglected for simplicity.

• Algorithm accounts for cell periodicity.

• Comparison between toy tracks at different starting points and 
angles.

• Convolution can be performed separately.

• Sub-optimal features:

• Finite resolution:  deviations are less relevant in the convolved signal.

• Producing and storing map files is not particularly efficient.
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DRIFT TIMES FROM FULL TRACKS

• The discretized response is useful for studying signal 
waveforms and may be integrated in the detector 
simulation.

• However, a simplified reconstruction could use the drift 
times to determine positions.

• Time-over-threshold of the induced current from full-
track simulations at several starting points and angles: 
100 tracks at each point.

• Signal times are linear w.r.t. the DCA è effective drift 
velocity can be defined.

• Constant 𝑣"#$%& design criterion is supported.
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SMALL SCALE PROTOTYPE

• Current activities for the design and construction of a 
small 30x30 cm chamber module prototype.

• The aim of the prototype is to gain experience in the 
construction, operation and readout design of this type of 
detectors.

• Mechanical design has been finalised, construction to 
start in the next few weeks.
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CURRENT ISSUES

• Full simulations in Garfield take too long: potential issue with the 
geometry definition.

• Only possible to simulate a few cells: field maps for the full (small 
scale) geometries would be useful.

• But drift chamber simulations are taxing for FEM software: 
producing quality meshes with Ansys-Maxwell or gmsh+elmer 
FEM libraries has not been possible.

• Instrumental effects are not included in Garfield++ simulations: 
capacitance and admittance matrices estimated from simplified 
models.
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CONCLUSIONS

• Defined the base configuration of a Drift Chamber tracking system for SAND.

• Electric field and drift simulations on the current model so far support the design.

• Current resources only allow simplified simulations: no realistic geometries, electrical/mechanical 
disturbances.

• Development of a 30x30 cm prototype module is ongoing: initial experience in construction and operation.

• Design of a larger 120x80 cm prototype for design validation is to start.
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