Status of SAND Simulations

Gianfranco Ingratta – INFN Bologna DUNE ITALIA 08/11/23 - Lecce

Content

- Status of Simulated Geometry
 - STT tracker
 - Drift Chamber
- Digitization
- Reconstruction
 - Track fit
 - Kalman Filter
- Future Prospects

Updates on SAND Geometry

- GRAIN dimensions have been updated following the foreseen prototype
- Latest simulation accounts for engineering requirements about clearances between GRAIN, STT and ECAL
- Basic STT design left untouched, with fewer modules
- Additional SAND geometry based on drift chamber
- Repo : <u>https://github.com/DUNE/dunendggd.git</u>
- Generate: ./build_hall.sh sand_opt3_STT1

ionale di Fisica Nucleare

4

DUNE

Content

- Status of Simulated Geometry
 - STT tracker
 - Drift Chamber
- Digitization
- Reconstruction
 - Track fit
 - Kalman Filter
- Future Prospects

Digitization – Straw Tube

Content

- Status of Simulated Geometry
 - STT tracker
 - Drift Chamber
- Digitization
- Reconstruction
 - Track fit
 - Kalman Filter
- Future Prospects

Track Reconstruction

ECAL, GRAIN see dedicated talks

- **Input**: STT hits position
- Assume helicoidal motion
- Circular fit on y-z plane $\rightarrow R$ curvature
- Linear fit on x-z plane $\rightarrow \lambda$ dip angle
- Output: reconstructed particle momentum

 $\begin{cases} p_x = p_T \tan \lambda \\ p_y = p_T \sin(\pi/2 - \Phi_0) \\ p_z = p_T \cos(\pi/2 - \Phi_0) \end{cases}$ $p_T[MeV/c] = 0.3 \times B[T]R[m]$

Track Reconstruction

- Assuming charged particles moves along a helix, the impact parameter is the minimum distance between the helix and the fired wire
- $\widetilde{r_i}$ expected impact parameter provided by i^{th} wire TDC
- *r_i* inferred impact parameter from NLL method:

Track Reconstruction

• *r_i* inferred impact parameter from NLL method:

$$NLL = \sum_{i} \frac{(r_i - \tilde{r}_i)^2}{\sigma_r^2}$$

- NLL minimization provides the helix parameter estimate
 - Φ_0, x_0 initial angle and position
 - R helix radius
 - λ dip angle
 - h helicity

Kalman Filter - Motivation

- VALERIO'S TALK The assumption that the particle's trajectory is a helix is not tri when accounting for Coulomb scattering (MCS) and energy loss during propagation
- KF reproduces the particle's trajectory by proceeding step by step and considering in each step the energy loss, MCS, measurement noise, etc.

Future Prospects

- We have SAND geometry simulation both for STT tracker and Drift Chamber
- A simulation campaign of **2 millions** v_{μ} **CC** already produced (GENIE + edepsim + digitization) to get physics performances (muon momentum solution, neutron and proton detection efficiency...)
- Working on a charged **tracks reconstruction** to obtain SAND tracking performances and physics capabilities

