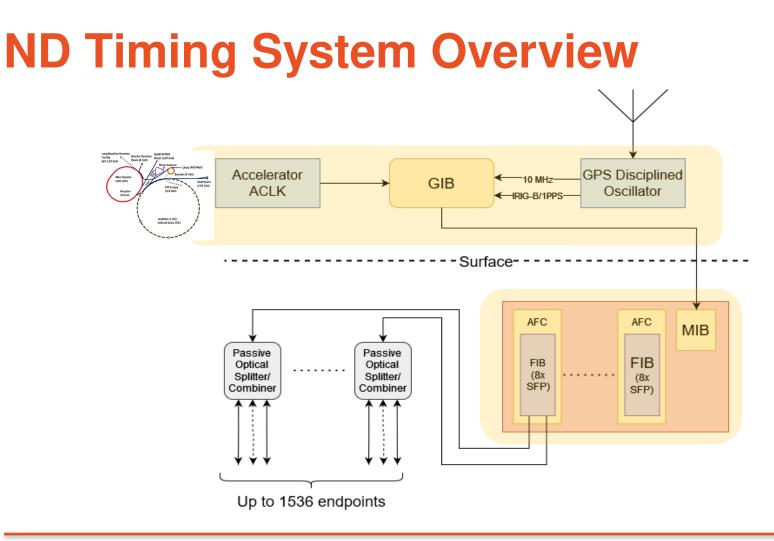
# A discussion on timing, a case for a unified SAND readout and more...

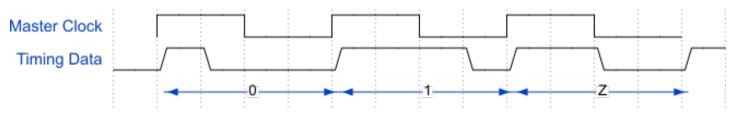
Nicolò Tosi DUNE Italia Lecce 6-7 Nov 2023




#### Part 1: Timing

#### In which we tell the white rabbit that it's too late...



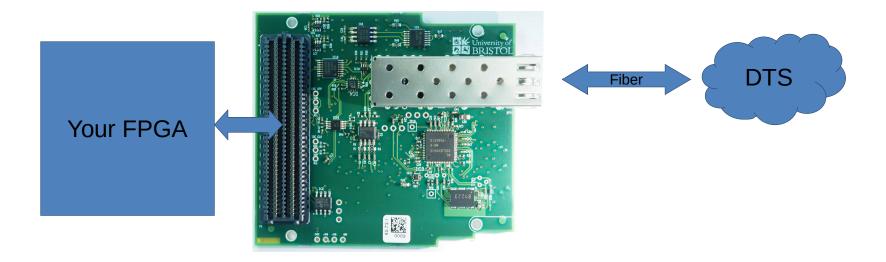







## **Dune Timing System signal**

- Single mode fibre carrying clock and synchronization messages
  - 62.5 MHz clock (recovered from data stream)




- Data carries periodic timestamps and synchronous commands
- Syncs by timestamping an event and broadcasting a message
- Clock edges at timing endpoint aligned to each other to O(100ps), long term, over 1500 endpoints
  - Down to <10 ps within a spill and a small group of endpoints



#### What is an "endpoint"?

• Reference endpoint hardware: an optical transceiver and a PLL



- DTS also provides reference firmware and a software library
- Built in delay compensation and control/monitoring functions



#### CINEN DUNE

# Our requirements

- We asked for O(10)-O(100) ps rms depending on subdetector
  - Both **between** and **within** subdetectors
  - Our strongest requirement applies only within a spill
  - DTS only "promised" O(100) ps
  - But they meant long term (i.e. drift), short term is better

- The requirement can be met
  - Within a spill, and a group of endpoints

| PLL BW | Skew stdev. |
|--------|-------------|
| 100Hz  | 31 ps       |
| 400Hz  | 6.9 ps      |
| 1kHz   | 2.8 ps      |
| 4kHz   | 1.8 ps      |

### **Open Questions**

- More detailed measurements of variance per endpoint group
  - So far only hard numbers for groups of 8 (same fiber)
  - Perhaps useful to test more SFPs?

- Beam timing measurement from accelerator seems lacking
  - Certainly does not reach O(100) ps
  - From our meeting of ND+Timing, indication that dedicated instrumentation using the Dune clock would be useful
  - Whose responsibility would that be?



#### Part 2: A common DAQ board?

In which we get to play with LEGO





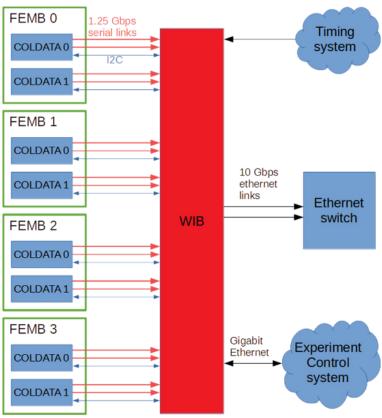
#### Some info from FD development

- DAQ will use 10G Ethernet links
  - Uses commercial transceivers, switches, PCIe cards.
  - DAQ group will provide a firmware block.

- The DUNE Timing System will distribute a 62.5 MHz clock + sync data to the FD, and are willing to do the same for the ND
  - They also provide a firmware block and library.

• Slow control still somewhat more open




#### **FD example: the Warm Interface Board**

• The warm part of FD readout

 Interfaces with cold boards on one side, DAQ + timing on the other

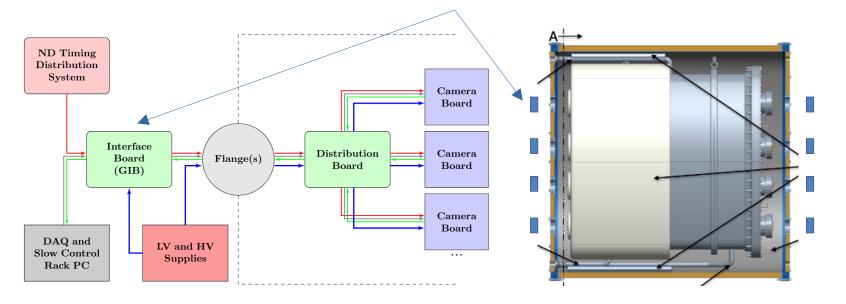
 Based on a Xilinx Zynq: FPGA + CPU (with embedded linux)

Quite close to our idea for GRAIN



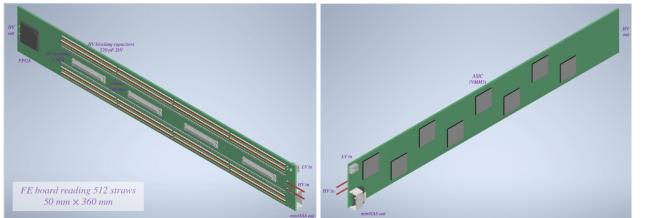


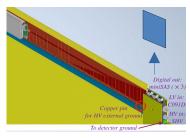
#### A suitable architecture for SAND too


- We have already agreed to go with dunedaq software-wise
  - This means integrating the DAQ group firmware in our boards

- We like the DUNE timing system
  - This means integrating the DTS group firmware in our boards

- It is only reasonable to use a very similar device (i.e. a Zynq)
  - Firmware is not 100% portable so the closer the hardware the better





- GRAIN wants a few boards that sit outside the cryostat
  - Each handling up to 8 "ALCOR++" ASICs or 8192 channels
  - OK size and granularity to be a DAQ/DTS endpoint





- STT wants a few hundred FE boards, gas cooled, in the frames
  - With 8 VMM3/Tigers for a total of 512 channels (wires)
  - Can not be a DAQ/DTS endpoint as is (can not fit fiber SFPs, perhaps too high power, fiber routing issue, low-ish granularity)
  - Endpoint as a separate board, out of gas, one per module







- Drift Chamber wants to separate ASICs and FPGA
  - Channel density is lower and we want to limit cable length
  - Single minimal ASIC board with one chip/64 ch
  - Digital I/O of multiple ASICs routed to an FPGA board
  - This board could be a DAQ/DTS endpoint.
  - A few endpoints per supermodule



14

- ECAL has "only" 5000 channels
  - Lowest channel density, but largest data/channel
  - Does not have an ASIC yet, nor a specific location for the boards
  - Any board made for ECAL could be a DAQ/DTS endpoint
  - Analog signal from PMTs
  - Digitization outside magnet
  - More on this in Part 3





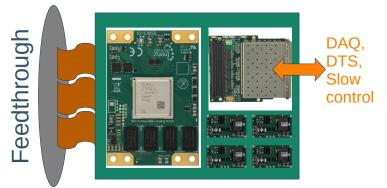
#### ... but we can share many components

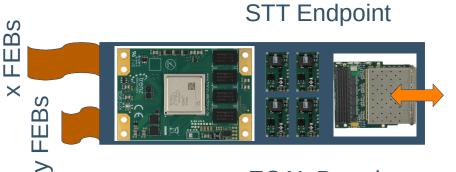


52mm x 76mm

| THE OWNER. | 1000   | 1 . |   | -   |     |   |
|------------|--------|-----|---|-----|-----|---|
|            | 3      | 1.1 |   |     |     |   |
| 2          | 1.22   |     |   |     | •   |   |
|            | F 40   |     |   |     |     | 1 |
|            | 1.22   |     |   |     |     | 5 |
| SE 1 1 1   | 1 14   |     | • |     |     |   |
|            | -i .3  |     |   |     |     |   |
|            | 19 A . |     |   |     |     |   |
|            | - 15   |     |   | ۰.  | ۰.  |   |
|            | 2      |     |   |     |     |   |
|            | - 16E  |     |   | . • |     |   |
|            | 120.00 |     |   | •   | · . |   |

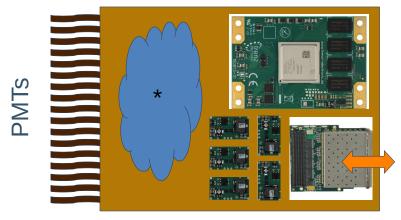



A custom base board for each system, **BUT** 


- Common FPGA:
  - For example Zynq Ultrascale "System on Module"
  - Includes FPGA, ARM CPU, RAM, Flash, ...
  - Commercial support claimed until 2035
  - Can share large fraction of Firmware and Software
- Common DAQ/DTS part
- Common power components (B field tolerant)



#### ... but we can share many components


#### **GRAIN Interface Board**





#### ECAL Board

# Drift Chamber Endpoint

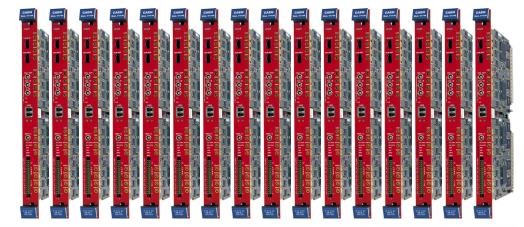


\* see Part 3



#### Semi-common on-detector DAQ design PROS CONS

- Reduced risk and complexity of PCB design
- Only one major modular firmware + software suite to develop and maintain
- Economies of scale on hardware component purchases
- Easier repairs/spare inventory


 Need to size the baseboards to have comparable "weight" i.e. data volume

• Need more cooperation on hardware development

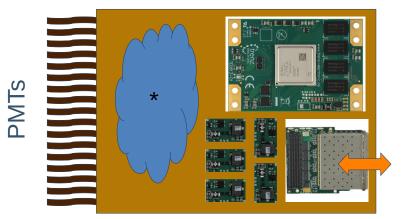


#### Part 3: ECAL

#### In which we try to avoid these






#### **ECAL Front End**

Why no FERS or similar?

 It does not *really* offer the required performance because the ASICs themselves do not

 It's impossible to hook it up to the DAQ and DTS

• It still costs quite a bit

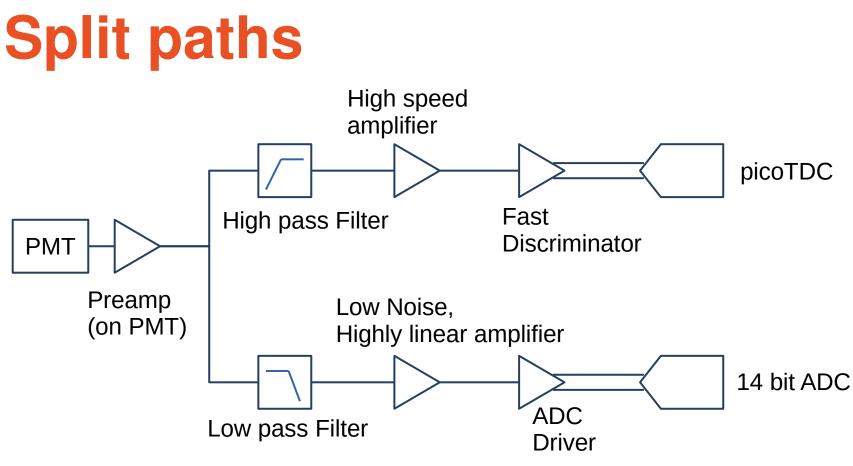


ECAL Board

The common components approach needs a Front End

- Let's try to design one




#### **ECAL Front End**

- A pure digitizer solution is very expensive (CAEN or homemade)
  - It's not just the ADCs, it takes a lot of FPGAs to read them

- No ASIC that I could find reaches the required resolutions
  - PicoTDC can reach the time, but ToT has poor amplitude resolution
  - MAROC is almost fast enough at 60 ps, but only 30 p.e. range
  - Analog memories are too short to capture the spill

• Left with old school separate solution, but with modern chips



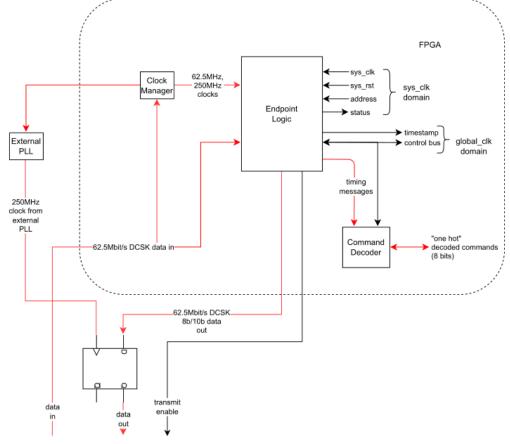


Note: some stages may be folded into a single active component



# **Expected signal response**

- Good time resolution
  - Down to O(10) ps after offline amplitude corrections
- Good charge resolution and range
  - 14 bit → up to a few 1000 p.e. with appropriate gain
- Multi-hit capability
  - Can resolve hits <100 ns apart after offline processing




#### Part 4: Backup

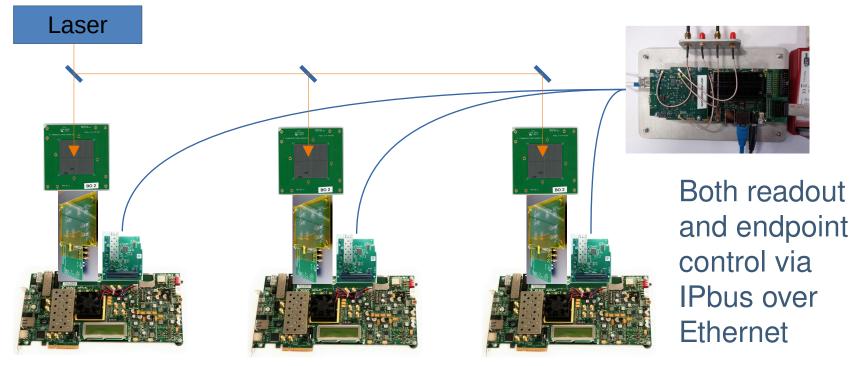
In which I put extra slides because there were too many already



#### **Timing Endpoint reference diagram**






#### **Timing Exercise With ALCOR DAQ in ARTIC**

- Bristol designed a reference Timing Endpoint
  - They can provide an FMC mezzanine, FW and SW (uses lpbus)
  - Acts as master or endpoint depending on loaded firmware
- We can plug these in our VC707 DAQ boards
- We need also a timing master board





#### **Timing Exercise With ALCOR DAQ**



• The VC707 has several SMA outputs that can be used to measure clocks (after its own PLL, but it may still be useful)



# ECAL costs guesstimate

• For a 60 channel barrel module

- 1x picoTDC @ ~100 EUR??
- 4x e.g. ADS52J90 @ 150 EUR
- Timing SFP, PLL, ... 100 EUR
- Discretes at least 600 EUR
- Board and connectors ~500 EUR
- SAND common FPGA on mezzanine
  - e.g. TE0813 (ZU4CG) @ 400 EUR
- O(50) EUR/ch, not including VAT, any R&D costs, different boards for endcap



FPGA w/

DAO and

endpoints

Timing

1x picoTDC,

64 ch

4x ADC.

16 ch

60x