3D IMAGING in GRAIN via Multiple View Geometry: Track Reconstruction

Giovanni De Matteis

DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI" Università del Salento and I.N.F.N - Sezione di Lecce Italia

Joint work with P. Bernardini, L. Di Noto and L. Martina

GENERAL PLAN

MULTIPLE VIEW PROJECTIVE GEOMETRY applied to

Previously

LIGHT POINTS RECONSTRUCTION ALGORITHM

Now

TRACK RECONSTRUCTION ALGORITHM

Then

MULTIPLE EVENTS ALGORITHM

GRAIN as a multiple lens system

Event 1: Single Track in Grain

Simulated Track: a muon from the center of GRAIN

We consider a semiline starting from the **origin** of Grain and directed as

$$\theta_X = 90^\circ, \quad \theta_Y = 45^\circ, \quad \theta_Z = 45^\circ$$

Cameras involved: 15,16,19,20,23,24, 31-36 2D Reconstructions

Event 2: two Tracks and Vertex

Simulation Details

track 0, $P_x, P_y, P_z \rightarrow (0.338, -0.512, 2.241)$ muon track 1, $P_x, P_y, P_z \rightarrow (-0.042, 0.120, 0.046)$ proton

Vertex (-30, 170, 79) (units: mm)

3D Event Representation

Camera Images from MC Simulations: 2D reconstruction Cameras involved: 19, 20, 23, 24, 27, 28, 29, 31, 33, 34, 35

FROM POINTS TO TRACKS

Tracks reconstruction: theoretical preliminaries

Back-projection of lines

 $\pi = \mathbf{P}^T \mathbf{l}$

 π vector of plane parameters in 3D space, **P** camera matrix, **l** vector of line parameters on the sensor, **L** infinite line in 3D space to be reconstructed

Line Reconstruction

$$\mathbf{L} = \left(egin{array}{c} \mathbf{l}^T \mathbf{P} \ \mathbf{l}'^T \mathbf{P}' \end{array}
ight)$$

 $\mathbf{l}^T \mathbf{P}$ vector of plane π parameters in 3D space, $\mathbf{l}'^T \mathbf{P}'$ vector of plane π' parameters in 3D space, \mathbf{P}, \mathbf{P}' camera matrices, \mathbf{l}, \mathbf{l}' vectors of lines l, l' parameters on the sensor, \mathbf{L} infinite line in 3D space (to be reconstructed)

Reconstruction Formula

$$\mathbf{LX} = \mathbf{0} \tag{1}$$

- X: generic point on the 3D line
- $\mathbf{L}: 2\times 4$ matrix of plane parameters

$$\mathbf{L} = \left(egin{array}{c} \mathbf{l}^T \mathbf{P} \ \mathbf{l}'^T \mathbf{P}' \end{array}
ight)$$

Event 1: Single Track in Grain

Simulated Track: a muon from the center of GRAIN

We consider a semiline starting from the origin of Grain and directed as

$$\theta_X = 90^\circ, \quad \theta_Y = 45^\circ, \quad \theta_Z = 45^\circ$$
 (2)

Director cosines

$$l = \cos \theta_X = 0, \qquad m = \cos \theta_Y = n = \cos \theta_Z = \frac{\sqrt{2}}{2}$$
 (3)

Starting point: (0, 0, 0)

$$X = 0, \qquad Y = Z$$

Track in Grain

2D Reconstructions Cameras involved: 15,16,19,20,23,24, 31-36

Global Multiple View Reconstruction of a Track

- The track is detected/seen by $N \ {\rm cameras}$
- There are $M = \frac{N!}{2!(N-2)!}$ possible double-view reconstructions for the track
- We perform M reconstructions
- We take the mean value of the M possible reconstructions for each line parameter (director cosines $\left(l,m,n\right)$)

$$\boxed{l = \frac{\sum_{i < j}^{N} l_{ij}}{M} \quad m = \frac{\sum_{i < j}^{N} m_{ij}}{M} \quad n = \frac{\sum_{i < j}^{N} n_{ij}}{M}} \tag{4}$$

- i, j camera indices
 - Analysis and averaging of intercepts and lines projected onto GRAIN coordinate planes XY, XZ, YZ of the M reconstructions

3D Global Reconstruction of the track

Track Reconstruction

• Theoretical

$$X = 0 \quad Y = Z$$

$$\theta_X = 90^{\circ} \quad \theta_Y = 45^{\circ}, \quad \theta_Z = 45^{\circ}$$

$$l = \cos \theta_X = 0, \qquad m = \cos \theta_Y = \frac{\sqrt{2}}{2}, \quad n = \cos \theta_Z = \frac{\sqrt{2}}{2}$$
(6)
Vertex $(0, 0, 0)$

• Reconstructed

$$X = 0 \quad Y = -3 + 1.05Z \tag{7}$$

$$\theta_X = 89.2^\circ \quad \theta_Y = 50^\circ, \quad \theta_Z = 45^\circ$$

Director cosines

$$l = \cos \theta_X = 0.006, \quad m = \cos \theta_Y = 0.6, \quad n = \cos \theta_Z = 0.7$$
 (8)

Vertex (0,3,6) units: mm

Event 2: two Tracks and Vertex

Simulation Details

track 0, $P_x, P_y, P_z \rightarrow (0.338, -0.512, 2.241)$ muon track 1, $P_x, P_y, P_z \rightarrow (-0.042, 0.120, 0.046)$ proton

Vertex (-30, 170, 79) (units: mm)

3D Event Representation

Orthogonal Projections onto Grain coordinate planes

Track 0

 $Y = 188.049 - 0.228Z, \quad Y = 124.556 - 1.515X, \quad X = -41.915 + 0.151Z$

Track 1

 $Y = -36.087 + 2.609Z, \quad Y = 84.286 - 2.857X, \quad X = 42.130 - 0.913Z$

Camera Images from MC Simulations: Fit Cameras involved: 19, 20, 23, 24, 27, 28, 29, 31, 33, 34, 35

Reconstruction Algorithm

Global Multiple View Reconstruction of two Tracks with Vertex

- The track is detected/seen by N cameras
- There are $M = \frac{N!}{2!(N-2)!}$ possible double-view reconstructions for the track
- $\bullet \ {\rm We \ perform} \ M$ reconstructions
- We take the mean value of the M possible reconstructions for each line parameter (director cosines $\left(l,m,n\right)$)

$$l = \frac{\sum_{i < j}^{N} l_{ij}}{M} \quad m = \frac{\sum_{i < j}^{N} m_{ij}}{M} \quad n = \frac{\sum_{i < j}^{N} n_{ij}}{M} \quad (9)$$

i, j camera indices

• Analysis and averaging of intercepts and lines projected onto GRAIN coordinate planes XY, XZ, YZ of the M reconstructions

Center Back Projection in 3D

Mean Track Projections on Grain Coordinate Planes for Vertex Reconstruction

Reconstruction in GRAIN

Vertex and Line reconstruction: numerical results

MC truth: Vertex(-30, 170, 79)

direction parameters:

(0.145, -0.220, 0.965) $\theta_X = 81^\circ, \theta_Y = 103^\circ, \theta_Z = 15^\circ$ Track 0 (-0.311, 0.888, 0.340) $\theta_X = 108^\circ, \theta_Y = 27^\circ, \theta_Z = 70^\circ$ Track 1 Reconstruction values: Vertex(-42, 142, 40)

direction parameters

 $\begin{array}{ll} (0.095,-0.228,0.961) & \theta_X=85^\circ, \theta_Y=103^\circ, \theta_Z=16^\circ & \mbox{Track 0} \\ (-0.273,0.835,0.472) & \theta_X=106^\circ, \theta_Y=33^\circ, \theta_Z=62^\circ & \mbox{Track 1} \end{array}$

Conclusions

So far

- Reconstruction of Light Points in GRAIN via Multiple View Projective Geometry
- We started the **Reconstruction of Tracks in GRAIN via Multiple View Projective** Geometry

TO BE DONE

- Improve the method by points and directions correspondence
- Triple view geometry for IMAGE TRANSFER: Trifocal Tensor
- Extension to events with multiple vertices and multiple tracks
- Software

and ...

THANK YOU

For Your Attention!

Triple-View Geometry and image correspondences:

the Trifocal Tensor

From Lenses to P-matrices

A \mathbf{P} -matrix is associated to each of the 38 camera-lenses of GRAIN

$$\mathsf{GRAIN} \Longleftrightarrow \{\mathbf{P}_j\}_{j=1,\dots,38} \tag{10}$$

3D reconstruction of Points and Tracks

$$i, j = 1, \dots 38$$

 $\pi_i = \mathbf{P}_i^T \mathbf{l}_i$

 π_i vector of plane parameters in 3D space, \mathbf{P}_i camera matrix i, \mathbf{l}_i vector of line parameters on the sensor i,

$$\mathbf{L}_{ij} = \left(egin{array}{c} \mathbf{l}_i^T \mathbf{P}_i \ \mathbf{l}_j^T \mathbf{P}_j \end{array}
ight)$$

 \mathbf{L}_{ij} infinite line in 3D space to be reconstructed $\mathbf{l}_i^T \mathbf{P}$ vector of plane π_i parameters in 3D space, $\mathbf{l}_j^T \mathbf{P}_j$ vector of plane π_j parameters in 3D space, $\mathbf{P}_i, \mathbf{P}_j$ camera matrices, $\mathbf{l}_i, \mathbf{l}_j$ vectors of lines l_i, l_j parameters on the sensor, \mathbf{L}_{ij} infinite line in 3D space (to be reconstructed)

$$\mathbf{L}_{ij}\mathbf{X} = \mathbf{0} \tag{11}$$

X: generic point on the 3D line \mathbf{L}_{ij} : 2 × 4 matrix of plane parameters

$$\mathbf{L}_{ij} = \left(egin{array}{c} \mathbf{l}_i^T \mathbf{P}_i \ \mathbf{l}_i^T \mathbf{P}_j \end{array}
ight)$$

As for points

$$\mathbf{0} = \mathbf{x}_i \times \mathbf{x}_i = \mathbf{x}_i \times \mathbf{P}_i \mathbf{X}_{ij}$$
(12)

$$\mathbf{0} = \mathbf{x}_j \times \mathbf{x}_j = \mathbf{x}_j \times \mathbf{P}_j \mathbf{X}_{ij}$$
(13)

$$\mathbf{X}_{ij} = \mathbf{P}_i^+ \mathbf{x}_i + \left[\frac{(\mathbf{P}_j \mathbf{P}_i^+ \mathbf{x}_i \times \mathbf{x}_j) \cdot (\mathbf{x}_j \times \mathbf{P}_j C_i)}{(\mathbf{x}_j \times \mathbf{P}_j C_i) \cdot (\mathbf{x}_j \times \mathbf{P}_j C_i)} \right] C_i$$
(14)

$$\mathbf{P}_{i}^{+} = \mathbf{P}_{i}^{T} \left(\mathbf{P}_{i} \mathbf{P}_{i}^{T} \right)^{-1}$$
(15)

 \mathbf{P}_i camera matrix i

 \mathbf{X}_{ij} reconstructed 3D point using cameras i and j, $i \neq j$.

 \mathbf{x}_i image point on camera i, C_i camera center i

Mean $pprox 89.2^\circ$, $\mathsf{RMS} \approx 16^\circ$

 $\mathrm{Mean} \approx 50^\circ, \qquad \mathrm{RMS} \approx 12^\circ$

 θ_Z Distribution

 $\mathrm{Mean} \approx 45^{\circ}, \qquad \mathrm{RMS} \approx 20^{\circ}$

 $\Delta \theta_X$ Distribution

 $\mathrm{Mean} \approx -0.8^\circ, \qquad \mathrm{RMS} \approx 16^\circ$

 $\text{Mean} \approx 7^{\circ}, \qquad \text{RMS} \approx 12^{\circ}$

 $\Delta \theta_Z$ Distribution

 $\mathrm{Mean}{\approx}-0.4^\circ, \qquad \mathrm{RMS}{\approx}~20^\circ$

$l = \cos \theta_X$ Distribution

 $\mathrm{Mean} \approx 0.006, \qquad \mathrm{RMS} \approx 0.25$

 $m = \cos \theta_Y$ Distribution

 $\mathrm{Mean} \approx 0.6, \qquad \mathrm{RMS} \approx 0.18$

 $n = \cos \theta_Z$ Distribution

 $\mathrm{Mean}{\approx 0.7}, \qquad \mathrm{RMS}{\approx 0.27}$

$\mathrm{Mean} \approx 0.006, \qquad \mathrm{RMS} \approx 0.25$

$\Delta\cos heta_Y$ Distribution

 $\mathrm{Mean}{\approx}-0.1, \qquad \mathrm{RMS}{\approx}~0.18$

$\Delta\cos heta_Z$ Distribution

 $\mathrm{Mean}{\approx}-0.02, \qquad \mathrm{RMS}{\approx}~0.27$

Details on Simulations

- 1000 light point sources
- 4×10^6 photons per point
- $\bullet~{\rm light}{-}{\rm yield}~4\times10^4~{\rm photons/MeV}$
- $\bullet\,$ energy release: $100~{\rm MeV}\,{\rm per}\,{\rm point}$
- processes: scattering, absorption, refractive indices depending on the wavelength

From Lenses to P-matrices

A \mathbf{P} -matrix is associated to each of the 38 camera-lenses of GRAIN

$$\mathsf{GRAIN} \Longleftrightarrow \{\mathbf{P}_j\}_{j=1,\dots,38} \tag{16}$$

Cameras on the 4 sides

elliptic side 1, even numbers
$$P_{2j}, j = 1, ..., 14$$
 (17)

elliptic side 2, odd numbers
$$P_{2j+1}, j = 0, ..., 13$$
 (18)

top side
$$\mathbf{P}_{2j}, \quad j = 15, ..., 19$$
 (19)

bottom side
$$\mathbf{P}_{2j+1}, \quad j = 14, ..., 18$$
 (20)

Elliptic side 1, even numbers

$$\mathbf{P}_{2j} = \mathbf{K} [\mathbf{R}| - \mathbf{R}C_{2j}], \quad j = 1, ..., 14$$

$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \quad \mathbf{R} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$C_{2j}, \quad j = 1, ... 14 \quad \text{lens centers in GRAIN}$$

$$\mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j}$$

$$\mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j}$$

$$\mathbf{P}_{2j} = \mathbf{P}_{2j}$$

$$\mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j}$$

$$\mathbf{P}_{2j} = \mathbf{P}_{2j} = \mathbf{P}_{2j}$$

$$\mathbf{P}_{2j} = \mathbf{P}_{2j}$$

$$\mathbf$$

Further parameterization of **P**-matrices for general Calibration

In fact, each of the 38 ${f P}$ matrices can be further parameterized by including **radial** distorsion

$$\mathbf{P}_{2j} = \mathbf{L}_{2j} \mathbf{K} \begin{bmatrix} \mathbf{R} | -\mathbf{R}C_{2j} \end{bmatrix}, \quad j = 1, ..., 14$$

$$\mathbf{L}_{2j} = \begin{pmatrix} L_{2j}(r) & 0 & x_c \\ 0 & L_{2j}(r) & y_c \\ 0 & 0 & 1 \end{pmatrix}$$
(24)

 $L_{2j}(r) = 1 + k_1^{2j}r + k_2^{2j}r^2 + k_3^{2j}r^3 + \dots, \qquad r = \sqrt{(x - x_c)^2 + (y - y_c)^2}$ (26)

(x,y) image coordinates on the sensor coordinate local frame, (x_c,y_c) distortion center on he sensor coordinate local frame

Elliptic side 2, even numbers

$$\mathbf{P}_{2j+1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_1 | -\mathbf{R}_1 C_{2j+1} \end{bmatrix}, \quad j = 0, ..., 13$$
(27)
$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R}_1 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
(28)
$$C_{2j+1}, \quad j = 0, ...13 \quad \text{lens centers in GRAIN}$$
(29)
$$\text{parameters: } c = 399, f = 100, p_z = 110, q_z = 105,$$

$$r_z = 90, p_y = 145, q_y = 290, r_y = 475, s = x_0 = y_0 = 0$$

units: mm

 $r_z =$

Top side, even numbers

$$\mathbf{P}_{2j} = \mathbf{K} \left[\mathbf{R}_2 \right] - \mathbf{R}_2 C_{2j} , \quad j = 15, ..., 19$$
 (30)

$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R}_2 = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$
(31)
$$C_{2j}, \quad j = 15, \dots 19 \qquad \text{lens centers in GRAIN}$$
(32)

parameters: $d = 609, f = 100, w_x = 145, v_x = 280, s = x_0 = y_0 = 0$

units: mm

Bottom side, odd numbers

$$\mathbf{P}_{2j+1} = \mathbf{K} \left[\mathbf{R}_3 | -\mathbf{R}_3 C_{2j+1} \right], \quad j = 14, ..., 18$$
(33)

$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R}_3 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
(34)
$$C_{2j+1}, \quad j = 14, \dots 18 \qquad \text{lens centers in GRAIN} \qquad (35)$$

parameters: $d = 609, f = 100, w_x = 145, v_x = 280, s = x_0 = y_0 = 0$

units: mm

Further parameterization of P-matrices for general Calibration

In fact, each of the 38 ${f P}$ matrices can be further parameterized by including **radial** distorsion

$$\mathbf{P}_{j} = \mathbf{L}_{j} \mathbf{K} \begin{bmatrix} \mathbf{R}_{j} | -\mathbf{R}_{j} C_{j} \end{bmatrix}, \quad j = 1, ..., 38$$
(36)
$$\mathbf{L}_{j} = \begin{pmatrix} L_{j}(r) & 0 & x_{c} \\ 0 & L_{j}(r) & y_{c} \\ 0 & 0 & 1 \end{pmatrix}$$
(37)

$$L_j(r) = 1 + k_1^j r + k_2^j r^2 + k_3^j r^3 + \dots, \qquad r = \sqrt{(x - x_c)^2 + (y - y_c)^2} \quad (38)$$

(x,y) image coordinates on the sensor local coordinate frame, (x_c,y_c) distortion center on the sensor local coordinate frame