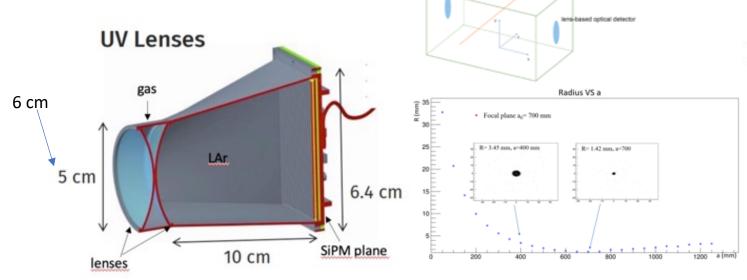
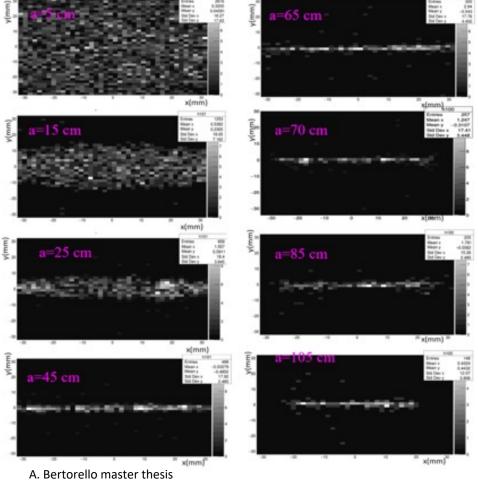
Update sui prototipi e simulazioni dei sensori basati sulle lenti

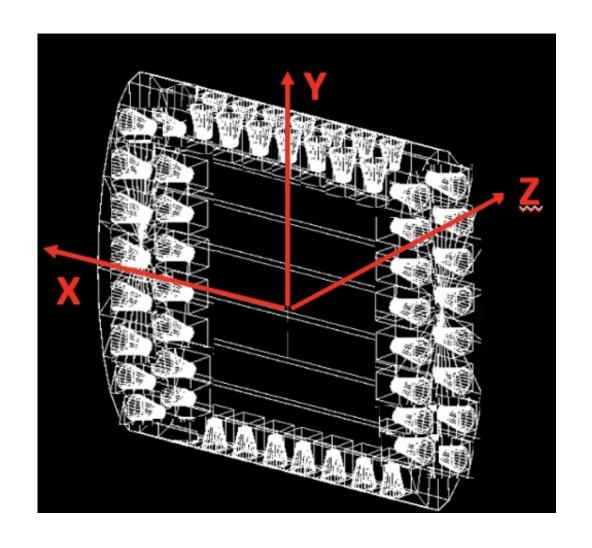

A. Caminata, DUNE Italia 6 Novembe 2023

Lens-based configuration: simulations

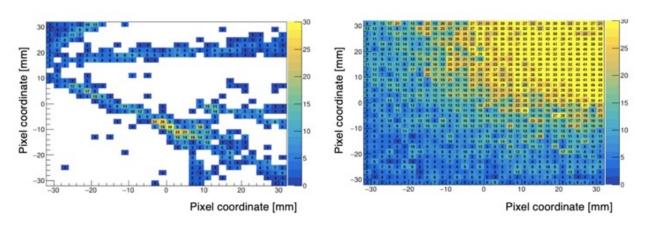

- GRAIN enlargment from 1 m to 1.5 m (direction perpendicular to the beam)
- Lens diameter increased to 6 cm

Performance evaluated in a simplified

geometry (box)



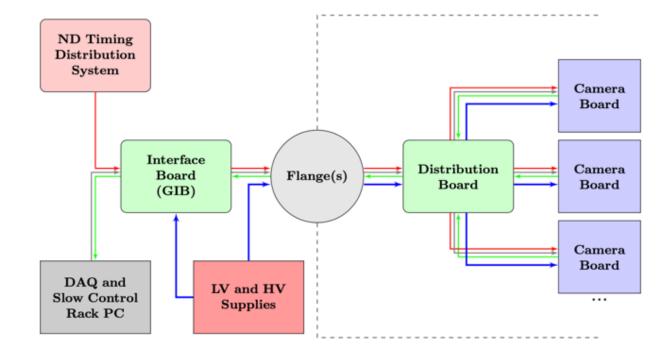
1 GeV muon parallel to the lens central plane


Lens-based configuration: simulations

- FoV: cone of semi-aperture 18°
- Track distinguishable distance > 40 cm from camera
- Distribution to ensure every point is visible by at least 1 camera
- 53 cameras: 16 on each side, 14 in the top, 7 in the bottom
- Matrices: 32x32
- SiPM dimension: 2x2 mm²

INFN GE+BO: ASIC requirements for GRAIN optical detector readout

- First version: June 2023
- Simulations output given to colleagues in INFN-TO for preliminary ASIC architectural simulations
- Basic framework considerations

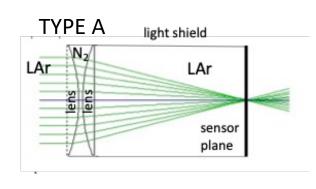


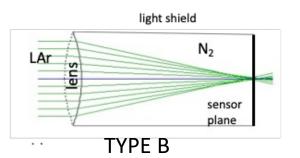
Contents Link to document

1	Intr	roduction	:
2	Exp	pected interactions in GRAIN	4
	2.1		6
		2.1.1 Optical sytem	
		2.1.2 SiPM matrices	7
3	ASI	IC Requirements	5
•	3.1	Requirements imposed by Photon distribution	,
	3.2	General requirements	
	3.3	Input/Output requirements	
	0.0	3.3.1 Data communication and slow control	
		3.3.2 Synchronization	
		3.3.3 Test pulse	
	3.4	Requirements imposed by Cryogenics	
	3.5	Summary	
	0.0	Summary	•
4	$\mathbf{G}\mathbf{R}$	AIN framework - preliminary layout	14
	4.1	Introduction	14
	4.2	GRAIN readout scheme	14
		4.2.1 Interface Board	14
		4.2.2 Flanges	1
		4.2.3 Distribution Board	1
		4.2.4 Camera Board	1
	4.3	Timing system and clock distribution	1
		4.3.1 Jitter requirements for the GRAIN electronics	
		4.3.2 Clock distribution	
		4.3.3 Time synchronization	
		4.3.4 Data line	

INFN GE+BO: ASIC requirements for GRAIN optical detector readout

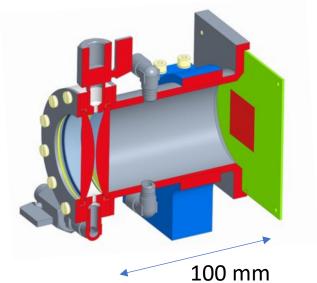
- First version: June 2023
- Simulations output given to colleagues in INFN-TO for preliminary ASIC architectural simulations
- Basic framework considerations


FIRST PROTOTYPES


- 2 types of **optical system:**
 - Type A: Two plane-convex lenses → gas between the two lenses
 - Type B: Single bi-convex lens → gas between the lens and the sensor.

- SILO Corning® HPFS 8655 glass → needs Xenon doping
- MgF₂ → does not need Xenon doping

Both material samples



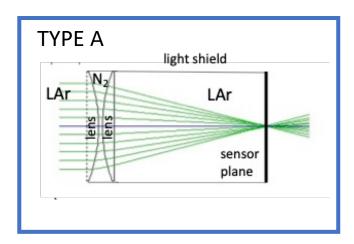
- Matrix with 16x16 SiPM with different size:
 - 1 mm available
 - 2 mm future → the baseline for GRAIN
 - 3 mm available

FIRST PROTOTYPES — TYPE A

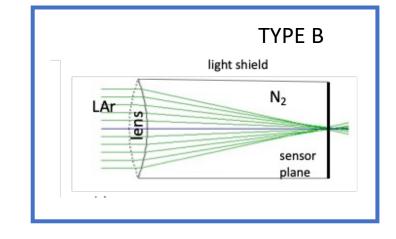
Material: Corning® HPFS 8655 glass

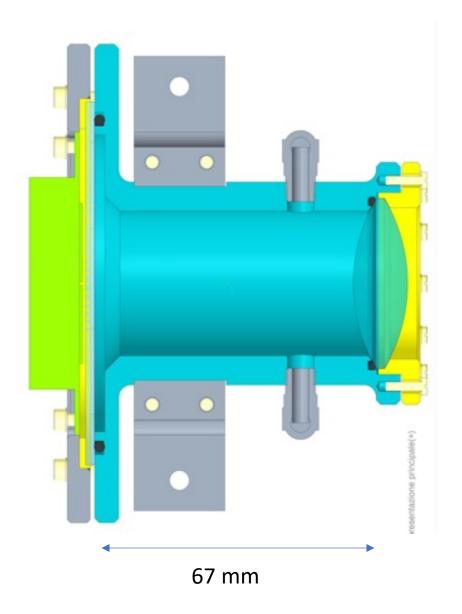
Focal lenght: 89 mm

- 2 built prototypes:


optimized curvature:

thickness: 12 mm


- bigger diameter 60 mm

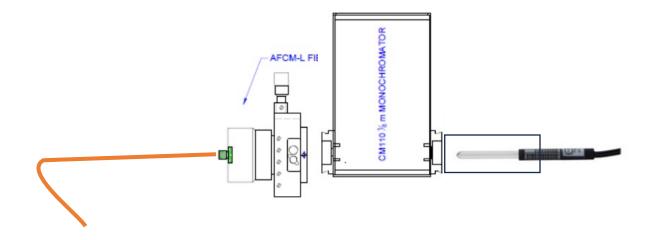

optimized for higher distance (up to 1.2 m)

thickness: 20 mm

LENS PROTOTYPES — TYPE B

Material: Corning® HPFS 8655 glass

Focal lenght: 64 mm


- 1 built prototype:

- diameter 50 mm

- thickness: 18 mm

ARTIFICIAL LIGHT SOURCE

• Hg lamp source + monochomator + fiber matching

- The light transmission at the end of a 2 m fiber was tested with CCD
- Next tests in LN₂ with SiPM

ARTIC is ready for the first tests

- Movable system for light source:
 - mounted and tested in LN2

 The flange for cables connections for sensors and for light was built

.. waiting for the SiPM readout and DAQ from Bo

