

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Study of a time-based readout architecture for the cryogenic ASIC

Meeting Annuale della Collaborazione Nazionale DUNE-Italia

Speaker: Sofia Blua (INFN – sezione Torino)

OUTLINE

- Simulation testbench for a time-based readout architecture
- □ SiPM model and single P.E. response at low temperature
- Signal pile-up and time-over-threshold studies for GRAIN

ALCOR: CHANNEL ARCHITECTURE

SIMULATION TEST BENCH

SIPM MODEL

- Array of **N microcells** composed by a Geiger mode SPAD (Single Photon) Avalanche Diode) in series with a guenching resistor
- Output signal = sum of every microcell signal

SIPM ELECTRICAL MODEL:

- □ In an event if **N**_A is the number of **active cells**, there will be (N – N_A) inactive cells!
- Both active and inactive cells give a contribution to FE input capacitance
- Circuit implemented in virtuoso schematic:

5

SIMULATION SETTINGS

SIMULATION FOR NPE COUNTING: Evaluate if the counting of the number of photoelectrons signals (NPE) from the ToT measure is possible considering the different pile up at 300 K and 77 K At cryogenic Lower 950.0 300 K **PILE UP** Ro 900.0 Amplitude temperatures: INCREASE **INCREASE** 850.0 Longer 300.0 V [mV] Tail 750.0 700.0 Simulation of 1 pe signal with different Ro 650.0 585.0 600.0 $R_0 = 300 \text{ k}\Omega$ 580.0 550.0 575.0 500.0 R_o = 700 kΩ 570.0 565.0 00 1.0 2.0 7.0 8.0 9.0 Time [µs] 560.0 $R_0 = 1100 \text{ k}\Omega$ [mV] 555.0 77 K 550.0 $R_0 = 1500 \text{ k}\Omega$ V [mV] 545.0 540.0 535.0 530.0 525.0 520.0 515.0 510.0 MUNUMAA 18.05 17.7 17.75 17.85 17.95 17.65 17.8 17.9 18.0 Time [µs] Discriminator threshold set in the middle of 1 PE 1.0 2.0 3.0 Time [µs]

CALIBRATION PROCEDURE AND RESULTS

DATA SIMULATION

Purpose: collect ToT [ns], NPE and NPE calculated from Calibration Function in Dataframes for both cases of 300 K and 77 K (same Setting of Calibration Procedure)

DATAFRAME GENERATION METHOD:

- A. ToT from the difference between rising and falling edge
- **B. NPE from calibration** curves through the inverted expression and ToT measure:
- **C. NPE** from the counting of ToA timestamps (ts) associated with a ToT measure
 - 1) Find the lowest **ts** that triggers the

	+- 2041 14200F-	
ts=6310.252509n	ts=2941.143995h	ts=1162.430133n
ts=7909.722309n	ts=1157.357231n	ts=2585.714538n
ts=5633.745519n	ts=1286.134020n	ts=4237.280447n
ts=1619.669377n	ts=1647.831395n	ts=1156.791763n
ts=1752.208531n	ts=6120.674058n	ts=1161.219772n
ts=1483.203236n	ts=3224.847052n	ts=1402.366011n
ts=7080.727761n	ts=2698.451500n	ts=1717.951852n
ts=4496.877135n	ts=1855.419581n	ts=4829.198521n
ts=3771.991602n	ts=1458.424114n	ts=9440.488181n
ts=5728.355110n	ts=1158.711752n	ts=1836.853481n
ts=1325.340684n	ts=1555.016123n	ts=3000.626679n
ts=1159.202383n	ts=1159.146577n	ts=1591.942222n
ts=1162.981585n	ts=3201.496401n	ts=1947.029911n
ts=6817.967855n	ts=2706.592441n	

 $\frac{1}{A}$ ToT -

NPE = 10

NPE = 8

8

DATA SIMULATION

DATAFRAME EXAMPLE:

RE [ns]	ts [ns]	NPE	FE [ns]	ToT [ns]	NPE Calib
1161.28	[1156.79, 1157.36, 1158.71, 1159.15,	8	1265.22	103.94	8.41
	1159.2, 1161.22, 1162.43, 1162.98]				
1290.76	[1286.13, 1325.34]	2	1372.29	81.53	4.33
1407.38	[1402.37]	1	1443.03	35.65	1.11
1462.79	[1458.42, 1483.2]	2	1535.08	72.29	3.29
1559.64	[1555.02, 1591.94, 1619.67, 1647.83]	4	1702.16	142.52	26.39
1722.35	[1717.95, 1752.21]	2	1800.82	78.47	3.96
1842.07	[1836.85, 1855.42]	2	1908.56	66.49	2.77
1952.32	[1947.03]	1	1986.75	34.43	1.07
2591.9	[2585.71]	1	2621.7	29.8	0.94
2704.34	[2698.45, 270° ^{mol}	0	°762.97	58.63	2.2
2947.29	[2941.14		977.26	29.97	0.94
3005.39)42.24	36.85	1.15
3207.64	[3201.5, 322]		274.83	67.19	2.83
3778.15	[3771.99		308.02	29.87	0.94
4243.35	[4237.28]	1	4273.28	29.93	0.94
4503.04	[4496.88]	1	4532.94	29.9	0.94
4835.37	[4829.2]	1	4865.2	29.83	0.94
5639.91	[5633.75]	1	5669.75	29.84	0.94
5734.03	[5728.36]	1	5766.55	32.52	1.01
6126.83	[6120.67]	1	6156.72	29.89	0.94
6316.4	[6310.25]	1	6346.41	30.01	0.94
6824.12	[6817.97]	1	6854.01	29.89	0.94
7086.89	[7080.73]	1	7116.77	29.88	0.94
7915.87	[7909.72]	1	7945.79	29.92	0.94
9446.66	[9440.49]	1	9476.49	29.83	0.94

RE [ns]	ts [ns]	NPE	FE [ns]	ToT [ns]	NPE Calib
1159.8	[1156.79, 1157.36, 1158.71, 1159.15,	22	2181.0	1021.2	606.03
	1159.2, 1161.22, 1162.43, 1162.98,				
	1286.13, 1325.34, 1402.37, 1458.42,				
	1483.2, 1555.02, 1591.94, 1619.67,				
	1647.83, 1717.95, 1752.21, 1836.85,				
	1855.42, 1947.03]				
2589.22	[2585.71]	1	2660.37	71.15	0.95
2700.81	[2698.45, 2706.59]	2	2903.07	202.26	2.31
2943.49	[2941.14, 3000.63]	2	3170.31	226.82	2.73
3203.75	[3201.5, 322]		3417.87	214.12	2.5
3775.43	[3771.9]		3848.32	72.89	0.96
4240.79	[4237.28		4311.57	70.78	0.94
4500.0	[4496.8]		4591.71	91.71	1.09
4832.49	[4829.2]	т	4915.02	82.53	1.02
5637.35	[5633.75]	1	5703.08	65.73	0.91
5730.52	[5728.36]	1	5858.6	128.08	1.39
6124.02	[6120.67]	1	6202.92	78.9	1.0
6313.11	[6310.25]	1	6419.38	106.27	1.2
6821.49	[6817.97]	1	6892.28	70.79	0.94
7083.91	[7080.73]	1	7171.76	87.85	1.06
7913.36	[7909.72]	1	7978.68	65.32	0.91
9444.12	[9440.49]	1	9508.62	64.5	0.9

ANALYSIS RESULTS

ANALYSIS RESULTS

ANALYSIS RESULTS

CONSIDERATIONS

- This simulation and analysis framework has been implemented for the evaluation of the feasibility of a time-based readout architecture, this is the first step for the future implementation of the mixed-signal ASIC: it can allow the evaluation of options in term of signal shaping and type of measure for photon counting
- Preliminary results with GRAIN Monte-Carlo data seems to indicate possible limitations on the use of a time-based readout architecture
- Next step: optimisation of the front-end (gain, shaping), study of a tail suppression and AC coupling topologies

THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

2D HISTOGRAM 77 K

ALCOR: TDCs ARCHITECTURE

- **TDC (Time to Digital Converter)**: supplies a digital representation of a time measure with a resolution up to 25-50 ps for 160-320 MHz
- 4 TDCs for each pixel
 - higher count rate capability
- Low Power Analog based dual ramp: based on charging of 2 equal capacitors with I_{fast} >> I_{slow}, enabled by switches

Interpolation Factor (IF) defines time binning:

$$IF = \frac{T_{fine}}{\Delta T} = \frac{C_{slow}}{I_{slow}} V_{slow} \frac{I_{fast}}{C_{fast}} = \frac{I_{fast}}{I_{slow}}$$
$$LSB = \frac{T_{clk}}{IF} \qquad f_{clk,Max} = 320 \text{ MHz}$$

ALCOR CHARACTERISATION WITH SiPMs

- □ ALCOR Test Board → chip wire bonded
- **LabVIEW:** configuration and DAQ program

❑ DAQ system:

- LN container
- <u>FPGA</u>: provides ASIC configuration, reads and sends output to PC
- Clock Generator: f_{clk} = 160 MHz
- SiPMs : HAMAMATSU S13360 series with pixel pitch of 25 µm and 50 µm (3 x 3 mm²)

FE THRESHOLD SCAN

TEST OF FE RESPONSE:

560 580 VTH [m\/]

Rate [Hz]

10²

500

105

Rate [Hz]

18

- Threshold Scan: SiPM input signal supplied to FE and threshold value changed step by step from maximum to minimum
- Fit of resulting S-curve provides signal amplitude values

10

10

Rate [Hz]

10

10⁷

10

Rate [Hz] 104

10¹

VTH [mV]

VTH [mV

Signal amplitude study at 77 K:

45 V

600

47 V

60

VTH [mV]

620

620

640

640

THRESHOLD SCAN RESULTS

TDCs CHARACTERISATION

TFine (Pixel 0, TDC 1) TFine (Pixel 0, TDC 0) TDCs CALIBRATION AT 77 K: 5000 5000 4000 T_{fine} histograms with randomly distributed signals to 4000 3000 evaluate LSB 표 2000 <u>لة 2000</u> MAX = 202.3MAX = 204.6MIN and MAX evaluated as µ of 1000 \geq 1000 MIN = 83. MIN = 83.2 TDC 0 TDC 1 double Fermi-Dirac curve fit of 100 150 200 250 300 100 150 200 250 300 $LSB = \frac{T_{clk}}{MAX - MIN}$ Tfine [digits] Tfine [digits] TFine (Pixel 0, TDC 2) TFine (Pixel 0, TDC 3) histograms' extremes: 5000 4000 4000 3000 3000 1000 Hedu u 2000 Tfine plateau $DNL(i) = \frac{N_i - N_{mean}}{N} \left| INL(i) = \sum_{k=0}^{i} DNL_i \right|$ 1000 MAX = 205.5 MAX = 194.1 1000 isn't exactly flat MIN = 71.2MIN = 74.4TDC 3 TDC 2 100 150 200 250 300 50 100 200 250 300 150

Tfine [digits]

Tfine [digits]

DNL (Differential Non-Linearity) and INL (Integral Non-Linearity) of Pixel 0:

STUDY OF DC OPERATING POINTS

