

Neutrinos with dark matter detectors

Neutrino 2024 Milano

Laura Baudis University of Zurich June 21, 2024

Why dark matter detectors?

Neutrino detectors

Dark matter detectors

✓ Low energy thresholds
 ✓ Low backgrounds
 ✓ Good energy resolutions
 ✓ Particle ID

• From the Sun

• From supernovae

• From the atmosphere

• No neutrinos

• From the Sun

• pp, ⁷Be, pep, ⁸B, (possibly) CNO: via ES, CEvNS and IBD

$$\nu_x + e^- \rightarrow \nu_x + e^-$$

• From supernovae

 $\nu_r + A \rightarrow \nu_r + A$

Sensitivity to all neutrino flavours from a core-collapse SN

Complementary measurements to experiments using CC reactions

"Flavour democratic" (C. Lunardi)

• From the atmosphere

 $\nu_x + A \rightarrow \nu_x + A$

"Ultimate" background for dark matter detectors at high DM masses

Sub-GeV atmospheric neutrino flux not yet measured, uncertainty on the predicted flux ~ 20%

Large exposures needed

No neutrinos

Second order weak decays:

 $Ov\beta\beta$ (2vββ), OvECEC (2vECEC), $Ov\beta^+EC$ (2vβ+EC), etc

¹³⁶Xe

³⁶Ar, ¹²⁴Xe, ¹²⁶Xe, ¹³⁴Xe

Which dark matter detectors?

- Large mass, noble liquid detectors using Ar, Xe
- Cryogenic crystal calorimeters
- Directional, gaseous TPCs

Single phase

Ar: DEAP-3600 (operating)

Laura Baudis, UZH: Neutrinos with dark matter detectors

Two phase TPCs

Ar: DarkSide-20k (in construction), Argo (future) Xe: LZ, PandaX-4T, XENONnT (operating) DARWIN/XLZD, PandaX-xT (future)

CRESST, SuperCDMS, COSINUS

(future)

Which dark matter detectors?

DEAP-3600

XENONnT

PandaX-4T

CRESST

SuperCDMS

DarkSide-20k (+ future Argo)

. DARWIN/XLZD

PandaX-xT

COSINUS

Signals and backgrounds

- Interactions with atomic nuclei and electrons: NRs and ERs
- Discrimination: charge/phonon/light ratio & pulse shape (LAr)

Laura Baudis, UZH: Neutrinos with dark matter detectors

Neutrino signals

• Neutrino signals: NRs (CEvNS), ERs (all other reactions)

B. Dutta, E. Strigari, Annu. Rev. Nucl. Part. Sci. 2019

Signals and backgrounds

• Neutrino signals: NRs (CEvNS), ERs (all other reactions)

Approaching the neutrino fog

- Here shown for nuclear recoils (v floor as boundary to "v fog")
- Region where experiments leave the Poissonian regime* \bullet

The "fog" for different targets

Effect of ν fluxes uncertainties

* σ where the DM discovery limit scales as ~ $(Mt)^{-1/n}$

 10^{2}

 10^{3}

 10^{4}

Approaching the neutrino fog

• Current & future noble liquid experiments

Snowmass, Topical Group on Particle Dark Matter Report, 2209.07426: "A critical feature of the neutrino fog is that it will move to lower cross section if uncertainties in the neutrino fluxes are reduced, opening up new space for continuing searches."

100 GeV WIMP discovery limits

C. O'Hare, PRD 102, 2020

Posters: Cecilia Ferrari, Carlo Fuselli

- Main goal: real-time measurement of solar neutrino flux at low energies
- In LXe: ~ 365 events/(t y) from pp v and 140 events/(t y) from ⁷Be v
- Infer P_{ee} and the weak mixing angle < 300 keV

Example: XENONnT backgrounds, SRO

Component	(1,10) keV	
214 Pb	56±7	
⁸⁵ Kr	6±4	
Materials	16±3	
Solar v	25±2	
¹²⁴ Xe	2.6±0.3	
¹³⁶ Xe	8.7±0.3	
Accidentals	0.7±0.03	

XENON collaboration, PRL 129, 2022

Laura Baudis, UZH: Neutrinos with dark matter detectors

- Main goal: real-time measurement of solar neutrino flux at low energies
- In LXe: ~ 365 events/(t y) from pp v and 140 events/(t y) from ⁷Be v
- Infer Pee and the weak mixing angle < 300 keV

Radon Removal System:

Radon Removal System:

17

Poster: Xinning Zeng

- Main goal: real-time measurement of solar neutrino flux at low energies
- In LXe: ~ 365 events/(t y) from pp v and 140 events/(t y) from 7 Be v
- Infer Pee and the weak mixing angle < 300 keV

Example: PandaX-4T backgrounds

Components	Expected counts	Fitted counts
²¹⁴ Pb	1865 ± 110	1845 ± 113
212 Pb	276 ± 71	270 ± 80
85 Kr	489 ± 254	405 ± 249
Material	683 ± 27	681 ± 27
$^{136}\mathrm{Xe}$	1009 ± 46	999 ± 47
$^{133}\mathrm{Xe}$	free	4751 ± 136
Peak 1: $[32-41]$ keV	free	119 ± 27
Peak 2: [64-68] keV	free	268 ± 37
$pp+^{7}$ Be neutrino	-	297 ± 260

PandaX collaboration, arXiv:2401.07045, Chinese Physics C, in press

Poster: Diego Ramirez

3.5 ²²²Rn (1 µBq/kg) $pp+^{7}Be$ neutrinos 3.0⊢ Rate $[(t \times y \times keVee)^{-1}]$ DARWIN/XLZD 222Rn goal 2.0F2νββ (current value in XENONnT ~0.8 µBq/kg) 1.5 1.0 ⁸⁵Kr 0.5 ²²²Rn (0.1 µBq/kg) 0.0 10 12 Energy [keVee] DARWIN collaboration, EPJ-C 80 12 (2020) 0.7 30 ty (natural) 30 ty (depleted) 300 ty (natural) 300 ty (depleted) P(ν_e → ν_e) 9.0 0.5 using pp neutrinos 18 0.18 0.20 0.22 0.24 0.26 0.28 0.30 $\sin^2\theta_w$

Main challenge: reduce ²²²Rn (²¹⁴Pb β-decay) background to x 10 below the pp rate (0.1 μBq/kg)

DARWIN/XLZD predictions

Laura Baudis, UZH: Neutrinos with dark matter detectors

- In LAr: ~ 5 events/(100 t d) from pep, ⁷Be, CNO and ⁸B v
- With 400 t x years exposure: ~2%, ~10%, ~15% for the Be, pep and CNO v's
- CNO measurement could discriminate between the LZ and the HZ SSM

Uncertainty versus ²²²Rn level

Poster: Dominik Fuchs

- In low-threshold, cryogenic calorimeters: high rates due eV-scale energy thresholds
- With 500 kg y: 7Be flux uncertainty < theoretical one

pp

B8

N13

hep pep

015

F17 Be7

total

10²

10¹

CNO: discriminate between the LZ and the HZ SSM with 1 tonne year exposure •

CaWO₄

 10^{-1}

 E_R (keV)

10⁰

⁷Be flux vs exposure

 10^{-3}

1 eV

 10^{-2}

count rate (keV⁻¹ tonne⁻¹ year⁻¹)

 10^{7}

10⁵

10³

 10^{1}

 10^{-1}

 10^{-3}

 $10^{-5}_{10^{-4}}$

Solar v-nucleus scattering Main goal: observe ⁸B neutrinos via CEvNS In LXe: ~99% of events expected < 4 keV NR energy Expect: 10⁴ events/(200 t y) for 2-fold S1 and 5 n_e S2*

Laura Baudis, UZH: Neutrinos with dark matter detectors

21

^{*}e.g., X. Xiang et al., PRD 108, 2023

Solar v-nucleus scattering

- Main goal: observe ⁸B neutrinos via CEvNS
- Constraints from XENON1T and PandaX-4T
- Ongoing analyses in LZ, XENONnT, PandaX-4T

from XENON1T and PandaX-4T

⁸B flux prediction & constraints

Poster: Yue Meng

PandaX-4T, PRL 130, 2023

Laura Baudis, UZH: Neutrinos with dark matter detectors

Solar v-nucleus scattering

- Main goal: observe ⁸B neutrinos via CEvNS
- Main background: accidentals
- Main uncertainty: light and charge yields at LEs

XENON, PRL 131, 2023

23

Laura Baudis. UZH: Neutrinos with dark matter detectors

Solar neutrinos: IBD

- LAr: ν absorption on ⁴⁰Ar to an excited state of ⁴⁰K (E_{thr} = 3.9 MeV)*
- Expected rate: ~ 2.2 events/(tonne x year)
- Ongoing search in DEAP-3600** for a first observation
- DarkSide-20k and Argo will provide higher stats measurements

$$\nu_e + {}^{40}_{18} \operatorname{Ar} \rightarrow {}^{40}_{19} \operatorname{K}^* + e^-$$

*Raghavan 86, Bhattacharia 98

**E. Ellingwood, talks at CAP 2024

Laura Baudis, UZH: Neutrinos with dark matter detectors

24

25

Poster Ricardo Peres

- Sensitivity to all v flavours: few events/ton expected from SN at ~10 kpc
- LAr: 70% (50%) of events < 10 keV (5 keV) NR; LXe: 90% of events < 5 keV NR
- Main challenge: low energies, understand few-e- backgrounds

Laura Baudis, UZH: Neutrinos with dark matter detectors

26

- Sensitivity to all v flavours, few events/ton expected from SN at ~10 kpc
- LAr: 70% (50%) of events < 10 keV (5 keV) NR; LXe: 90% of events < 5 keV NR

DarkSide-20K: rate in LAr, 11 and 27 M_{\odot} SN at 10 kpc $\,$ Detection efficiency for different thresholds, LAr $\,$

• Main challenge: low energies, understanding of few-e⁻ backgrounds

Agnes et al., JPCAP 043, 2021

27

- Next-generation detectors: sensitivity beyond SMC
- XENONnT and DarkSide-20k at LNGS: part of SNEWS2.0
- Good time resolution due to CC interactions in outer vetoes

Poster Max Hughes

- Cryogenic bolometers can probe the local region in the MW
- Nal bolometer: sensitive up to 1 kpc
- Muon veto (water Cherenkov): sensitive up to 16 kpc

 $0\nu\beta\beta$ decay of ¹³⁶Xe

- ¹³⁶Xe: present at 8.9% abundance in ^{nat}Xe
- Energy resolution of large two-phase Xe TPCs at $Q_{\beta\beta}$: < 1% (σ/E)

LUX-ZEPLIN, JINST 18, 2023

$0\nu\beta\beta$ decay of ¹³⁶Xe

Poster Maxime Pierre

- Ongoing searches in LZ, PandaX-4T, XENONnT
- LZ sensitivity: T_{1/2} ~ 1.2 x 10²⁶ y

XENONnT, preliminary; ¹³⁶Xe 0vββ region blinded

$0\nu\beta\beta$ decay of ¹³⁶Xe

Posters: Jose Cuenca, Diego Ramirez

- Proof-of-concept for next-generation detectors, XLZD and PandaX-xT
- Assumptions: $0.1 \mu Bq/kg^{222}Rn$, materials radiopurity already identified

XENON-LUX-ZEPLIN-DARWIN (XLZD) preliminary

DARWIN study: EPJ-C 80, 2020

Ovββ decay of ¹³⁶Xe

- Proof-of-concept for next-generation detectors, XLZD and PandaX-xT
- Assumptions: 0.1 μ Bq/kg ²²²Rn, materials radiopurity already identified

Projections for PandaX-xT (4 t of ¹³⁶Xe)

 $2\nu\beta\beta$ decay of ¹³⁶Xe

- T_{1/2} measured by PandaX-4T: 2.27 ± 0.03(stat.) ± 0.09(syst.) × 10²¹ y
- First measurement in ^{nat}Xe, in large (440 2800 keV) ROI

PandaX, Research, 9798721 (2022)

- ³⁶Ar, ¹²⁴Xe, ¹²⁶Xe, ¹³⁴Xe
- Some with interesting topologies $0v/2vEC\beta^+$, $0v/2v\beta^+\beta^+$
- Can also probe SM/nuclear physics

Posters: Zihao Bo, Paloma Cimental

 124 Xe + 2e⁻ \rightarrow 124 Te + 2 ν_e XENON, Nature 568, 2019

Laura Baudis, UZH: Neutrinos with dark matter detectors

³⁴

Other 2nd order weak decays

• ³⁶Ar, ¹²⁴Xe, ¹²⁶Xe, ¹³⁴Xe (10.4% in ^{nat}Xe)

- First results on ¹³⁴Xe from PandaX-4T
- Lower limits: $T_{1/2}^{2\nu\beta\beta} > 2.8 \times 10^{22} y$, $T_{1/2}^{0\nu\beta\beta} > 3 \times 10^{23} y$ (90% CL)

PandaX, PRL 132, 2024

HAN, Ke (Shanghai Jiao Tong University)

Atmospheric neutrinos

• In general, exposures > few 100 t y are needed for $5-\sigma$ detection

Newstead, Lang, Strigari, PRD 104, 2021

Atmospheric neutrinos

• In general, exposures > few 100 t y are needed for $5-\sigma$ detection

See study at different labs (for Ar and Xe exp): Y. Zhuang et al., PRD109, 2024

Conclusions & Outlook

- Dark matter detectors: ultra-low backgrounds & low energy thresholds
- Backgrounds for the dark matter search: soon to be dominated by ν 's
- Competitive sensitivity to ν 's from a variety of sources and to second order weak decays with & without ν 's
- Complementary measurements to dedicated ν experiments
- Next months: new results expected from ongoing experiments
- Future: higher stats measurements from next-generation detectors

Thank you

Additional material

DSNB with CEvNS

- Understanding of core-collapse SN depends on probing DSNB with all flavours
- So far, only upper limits in ν_e and $\bar{\nu}_e$ flux by SNO and SuperK (19 cm⁻²s⁻¹, 2.7 cm⁻²s⁻¹), limits on in $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$ fluxes much weaker (per flavour, ~10³ cm⁻²s⁻¹), XLZD could probe these down to ~ 10 cm⁻²s⁻¹ or better, depending on fiducial mass

Laura Baudis, UZH: Neutrinos with dark matter detectors

Solar neutrinos

- High-Z versus low-Z models in LXe
- Target depleted in ¹³⁶Xe needed to distinguish between HZ and LZ up to theoretical uncertainties

Directional detectors

• The incoming direction of WIMPs and solar neutrinos differs: this can be exploited to overcome the solar "neutrino fog"

The neutrino fog

Effect of astrophysical v backgrounds: gradual, hence the "neutrino fog"

Here v fog for a Xe target: blue contour map

At contour n: obtaining a 10 times lower cross section sensitivity requires an increase in exposure of at least 10ⁿ

Credit Ciaran O'Hare

Approaching the neutrino fog

- Here shown for electronic recoils (v floor as boundary to "v fog")
- Region where experiments leave the Poissonian regime*

The "fog" for Si and Xe targets, for 2 mediators

* σ where the DM discovery limit scales as $\sim (Mt)^{-1/n}$

Energy thresholds in Xe TPCs

- S1 + S2: ~ 1 keV with 3-fold coincidence (ER) (hits in \geq 3 PMTs within ~50-100 ns); lower threshold (< 1 keV) with 2-fold coincidence (with lower signal efficiency)
- S2-only: ~ 0.2 keV, with 5 e⁻ 100 e⁻ detected (probe ER and NR interactions), down to W-value, with 1 e⁻ - 5 e⁻ signal (mostly probe ER interactions due to large uncertainty in quenching factor for NRs at lowest energies)

At least 3 PMTs see a signal, summed signal > 3 phd

PandaX-4T, PRL 130, 2023

AC backgrounds in TPCs

- Combinatorial background at low energies can be significant
- Main sources for isolated S1 and isolated S2 signals
 - Primary scintillation (S1s)
 - Dark counts (pile-up) \propto nr. channels
 - Charge-insensitive regions
 - Delayed photons
 - Electroluminiscence (S2s)
 - Bulk xenon S2-only events
 - Delayed electrons
 - Electrode events

Laura Baudis, UZH: Neutrinos with dark matter detectors

Example from XENONnT

Ionisation only backgrounds

- Radioactivity
- Solar neutrinos
- Instrumental
 - Spurious emission of single and few electrons from the cathode
 - Delayed e⁻ after large S2 signals: trapped e⁻ at the liquid/gas interface; e⁻ emitted from impurities, etc
- Important to understand & mitigate origin, develop background models

Ionisation only backgrounds

- Radioactivity
- Solar neutrinos
- Instrumental
 - Spurious emission of single and few electrons from the cathode
 - Delayed e- after large S2 signals: trapped e- at the liquid/gas interface; e- emitted from impurities, etc
- Important to understand & mitigate origin, develop background models

• ³⁶Ar (0.33%), ¹²⁴Xe (0.095%), ¹²⁶Xe (0.089%), ¹³⁴Xe (10.4%)

Geoneutrinos

- + $\bar{\nu}_e$ from the Earth: low energies \Rightarrow ERs (via ES) needed for detection
- Low fluxes: large exposures (100 1000 t y) needed
- A measurement of ⁴⁰K $\bar{\nu}_e$: can help constrain its radioactive contribution to the Earth's surface hear flow
- Directional detectors: could suppress the solar neutrino background

AGM2015: Antineutrino Global Map 2015 (geo-v flux due to ²³⁸U & ²³²Th decay in the Earth's crust and mantle)

