Discover New Physics with Neutrinos!

outline

- 1. High-energy, long propagation experiments
- 2. High-intensity, high-precision experiments
- 3. Challenges

An Italian-American being forced to watch pineapple added to pizza for the first time (1914 Brooklyn, USA)

My talk is not that bad...

Discover New Physics with Neutrinos?

Where is new physics???

Paradigm shift from neutrino physics

We continue our investigations of neutrinos...

- Measure neutrino parameters and interactions with higher accuracy
- Study persistent anomalies
- Search rare processes (0nbb, proton decay, etc)

What else can we do? Where is new physics?

- 3-massive active neutrino model (vSM) paradigm is very successful
- \rightarrow New physics effect is small in current experiments

We explore all possible scenarios to look for new physics!

- High energy
- Low energy \rightarrow high precision measurement
- Long propagation \rightarrow accumulate new physics effect

- Short propagation \rightarrow high intensity to find rare process Every neutrino experiments can be described by L and E

Argüelles, Hostert, TK, in preparation

5

Argüelles, Hostert, TK, in preparation

High energy, long propagation experiments

High energy, long propagation experiments

Atmospheric neutrinos

- Long baseline accumulates new physics effect
- High energy enhances new physics effect

Atmospheric neutrino energy spectrum

- Atmospheric neutrinos have higher sensitivity to most of new physics searches than accelerator-based longbaseline experiments

High-energy astrophysical neutrinos

- Long baseline accumulates new physics effect
- High energy enhances new physics effect
- the sector spectrum $H \sim \frac{m^2}{2E} + V(new physics), P \sim V(new physics) \cdot L$
- Energy spectrum, arrival time, flavor are affected by production, propagation, detection of neutrinos

Affects arrival dinections

Acts during propagation

DM-v interaction

Lorentz+CPT violation

Long-range interactions.

DE-v interaction

Neutrino decay

Acts at production

DM annihilation

Heavy relics

detector

Violation of Lorentz invariance

- Theoretically motivated (long list of models)
- Neutrino interacting with new fields in vacuum
- Matter potential in vacuum, but very small
- Energy spectrum, arrival time, flavor are affected

Flavor mixing

- Astrophysical neutrino flavor physics

High-energy Astrophysical objects

```
IceCube, Nature Phys. 18, 1287 (2022)
```

High-energy

objects

Astrophysical

High-energy, long propagating neutrinos

Astrophysical neutrino flavor physics

- Flavor triangle
- Spectrum integrated flavor ratio $(v_e: v_\mu: v_\tau)$
- Standard production models include v_e and v_{μ}

Flavor mixing

15

High-energy

objects

Astrophysical

High-energy, long propagating neutrinos

Astrophysical neutrino flavor physics

- Flavor triangle
- Spectrum integrated flavor ratio $(v_e: v_\mu: v_\tau)$
- Standard production models include v_e and v_{μ}
- Flavor ratio observables on Earth is different
- Deviation from this "island" is new physics signal

Flavor mixing

Astrophysical neutrino flavor physics

- Flavor triangle
- Spectrum integrated flavor ratio $(v_e: v_\mu: v_\tau)$
- Standard production models include v_e and v_u
- Flavor ratio observables on Earth is different
- Deviation from this "island" is new physics signal

Data contour covers most of flavor triangle

- New physics cannot be discovered from current data

tau

- Limits are set on vacuum operators

Lorentz violation searches in SME framework

- Lower dimension operators \rightarrow searches by tabletop experiments
- Higher dimension operators \rightarrow searches by astrophysical observations

	m^2				`								
$H \sim \frac{1}{2} + a^{(3)} - E \cdot c^{(4)} + E^2 \cdot a^{(5)} - E^3 \cdot c^{(6)} \cdots$													
	2E				_								
dim.	method	type	sector	limits	ref.								
$\overset{\circ}{a}{}^{(3)}$	CMB polarization	astrophysical	photon	$\sim 10^{-43} { m GeV}$	[2]								
	He-Xe comagnetometer	table top	neutron	$\sim 10^{-34}~{ m GeV}$	[3]								
	torsion pendulum	table top	electron	$\sim 10^{-31}~{ m GeV}$	[4]								
	muon g-2	accelerator	muon	$\sim 10^{-24} { m GeV}$	[5]								
	neutrino mixing	astrophysical	neutrino	$\sim 10^{-26} { m GeV}$	[1]								
$\mathring{c}^{(4)}$	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-38}$	[6]								
	Laser interferometer	LIGO	photon	$\sim 10^{-22}$	[7]								
	Sapphire cavity oscillator	table top	photon	$\sim 10^{-18}$	[8]								
	Ne-Rb-K comagnetometer	table top	neutron	$\sim 10^{-29}$	[9]								
	trapped Ca^+ ion	tabletop	electron	$\sim 10^{-19}$	[10]								
	neutrino mixing	astrophysical	neutrino	$\sim 10^{-31}$	[1]								
$\mathring{a}^{(5)}$	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-34} { m GeV^{-1}}$	[6]								
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-22}$ to 10^{-18} GeV	$^{-1}$ [11]								
	neutrino mixing	astrophysical	neutrino	$\sim 10^{-37} { m GeV^{-1}}$	/[1]								
$\overset{\circ}{c}^{(6)}$	GRB vacuum birefringene	astrophysical	photon	$\sim 10^{-31} { m GeV}^{-2}$	[6]								
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-42}$ to $10^{-35}~{\rm GeV}$	$V/^{2}$ [11]								
	gravitational Cherenkov radiation	astrophysical	gravity	$\sim 10^{-31} { m GeV}^{-2}$	[12]								
	neutrino mixing	astrophysical	neutrino	$\sim 10^{-42} { m GeV}^{-2}$	[1]								

Lorentz violation

Lorentz violation searches in SME framework

- Lower dimension operators \rightarrow searches by tabletop experiments

Physics MMA

torsion

con

		dim		method	type	sector	limits	r	ef.
		$\overset{\circ}{a}{}^{(3)}$	$\langle ($	CMB polarization	astrophysical	photon	$\sim 10^{-43} { m GeV}$]	2]
	optical		He-	Xe comagnetometer	tabletop	neutron	$\sim 10^{-34}~{ m GeV}$	[3
	resonator			torsion pendulum	table top	electron	$\sim 10^{-31}~{ m GeV}$	[4
		\backslash		muon g-2	accelerator	muon	$\sim 10^{-24}~{ m GeV}$		5]
				neutrino mixing	astrophysical	neutrino	$\sim 10^{-26} { m GeV}$	[1]
		$\overset{\circ}{c}^{(4)}$	GRB	vacuum birefringence	astrophysical	photon	$\sim 10^{-38}$	[6
0				aser interferometer	LIGO	photon	$\sim 10^{-22}$	[7
			Sap	phire cavity oscillator	table top	photon	$\sim 10^{-18}$		8]
nagnetomator			Ne-F	kb-K comagnetometer	table top	neutron	$\sim 10^{-29}$	[9
and the second			1	trapped Ca ⁺ ion	tabletop	electron	$\sim 10^{-19}$	¥ [/	/ 0]
			<u> </u>	neutrino mixing	astrophysical	neutrino	$\sim 10^{-31}$] /[$\left[1\right]$
	vacuum birefringence	$\overset{\mathrm{o}}{a}^{(5)}$	GRB	vacuum birefringence	astrophysical	photon	$\sim 10^{-34} { m GeV^{-1}}$	[6
			ultra-	high-energy cosmic ray	astrophysical	proton	$\sim 10^{-22}$ to 10^{-18} Ge	Y^{-1} []	[1]
				neutrino mixing	astrophysical	neutrino	$\sim 10^{-37} { m GeV^{-1}}$] /[[1]
		$\overset{\circ}{c}^{(6)}$	GRE	3 vacuum birefringene	astrophysical	photon	$\sim 10^{-31} { m GeV^{-2}}$	[6]
			→ ultra-	high-energy cosmic ray	astrophysical	proton	$\sim 10^{-42}$ to 10^{-35} Ge	$V/^{2}$ [1	[1]
			gravitati	onal Cherenkov radiation	astrophysical	gravity	$\sim 10^{-31} { m GeV^{-2}}$	1] 🖌	12]
				neutrino mixing	astrophysical	neutrino	$\sim 10^{-42} { m GeV}^{-2}$	۱ (1

Lorentz violation

Weak interaction + small mass + mixing = macroscopic quantum system you cannot disturb

Boris Kayser (1938-2024)

[1] IceCube, Nature Phys. 18, 1287 (2022) [2] WMAP, AstrophysJ.180, 330 (2009) [3] Allmendinger et al., PRL112, 110801 (2014) [4] Heckel et al., PRL97, 021603(2006) [5] Muon g-2, PRL100, 091602 (2008) [6] Kostelecký, Mewes, PRL110, 201601 (2013) [7] Kostelecký, Melissinos, Mewes, PLB 761, 1 (2016) [8] Nagel et al., Nature Comm. 6, 8174(2015) [9] Smiciklas et al., PRL107, 171604 (2011) [10] Pruttivarasin et al., Nature 517, 592 [11] Maccione et al., JCAP 0904, 022 [12] Kostelecký, Tasson, PLB 749, 551

High-energy, long propagating neutrinos - summary

High energy astrophysical neutrinos have amazing new physics sensitivity, and it will increase more

Multi-messenger astronomyTalk by Maurizio Spurio (Tuesday)
Anna Franckowiak (Friday)- High-energy astrophysical neutrino model errors will be
reduced (spectrum, flavor, direction, time)

Talk b

New neutrino telescopes

Talk by Kaeli Hughes (Wednesday) Naoko Kurahashi (Wednesday)

- Higher statistics to reach higher energy events

Neutrino physics

Talk by Mariam Tórtola (Monday)

- Oscillation parameter errors will be reduced

Strong synergy between particle physics and astrophysics!

MicroBooNE, PRD106(2022)092006, PRL132(2024)041801, ArXiv:2312.13945, de Gouvêa, Fox, Harnik, Kelly, Zhang, JHEP01(2019)001, T2K, PRD100(2019)052006, Snowmass2021 J.Phys.G50(2023)020501,Batell, Berger, Ismail, PRD100(2019)115039

High-intensity, high-precision experiments

Magill, Plestid, Pospelov,Tsai, PRL122(2019)071801, ArgoNeuT, PRL124(2020)131801 Waites et al., PRD107(2023) 095010, Hostert, McKeen, Pospelov, Raj, PRD107(2023)075034

High-intensity, high-precision experiments

CCM, PRL129(2022)021801, PRD106(2022)012001:107(2023)095036:109(2024)095017 COHERENT, PRL130(2023)051803, PRD106(2022)052004:109(2024)092005

High-intensity, high-precision experiments

New particle searches

- Heavy neutral leptons
- Long lived particles
- Higgs Portal Scalar
- Dark trident
- Millicharged particles
- Dark neutron
- All kinds of dark matter particles
 - scalar, pseudoscalar
 - vector, axion-like particle
 - Dirac, Majorana, pseudo-Dirac
 - Leptophobic, etc

... New particle Zoo!

CCM dark matter searches

Pandey, PPNP134(2023)104078, Van Dessel, Pandey, Ray, Jachowicz, Universe9(2023)207 COHERENT, PRL126(2021)012002: 129(2022)081801, PRD109(2024)092005

High-intensity, high-precision experiments

High-precision spectrum measurements

- Beta and double-beta decays
- Neutrino-electron scattering
- Coherent elastic neutrino nucleus scattering (CEvNS)
- Next generation CEvNS new physics searchers may be affected with nuclear models

Talk by Alexey Lokhov (Wednesday)

Talk by Irina Nasteva (Friday) Matt Green (Friday)

Form factor model differences

Anomalies are (mostly) explained by Strong interaction

CLAS, Nature 566(2019)354, Lovato, Carlson, Gandolfi, Rocco, Schiavilla, PRX10(2020)031068, Gysbers, Hagen, Holt et al, Nature Phys. 15(2019)428 Meyer, Walker-Loud, Wilkinson, Annu Rev.Nucl.Part.Sci.72(2022)205, PNDNE, PRD109(2024)014503, PACS, PRD109(2024)094505

Many anomalies have explanations using Strong interaction (QCD, nuclear physics, hadron physics)

27

Nakamura Kamano, Hayato, Hirai, Horiuchi, Kumano, Murata, Saito, Sakuda, Sato Rep.Prog.Phys.80(2017)056301 https://tendl.web.psi.ch/tendl 2015/tendl2015.html

> Next generation detectors use hadron final states to exploit neutrino information to look for new physics

30

28

High-intensity, high-precision experiments - Summary

Nuclear physics in particle physics

- Current neutrino experiments use state-of-the-art nuclear theories and models oscillation physics, CEvNS, $0\nu\beta\beta$...
- Neutrino physics is a major topic in nuclear physics communities
 <u>JLab</u>, <u>INT</u>, <u>ECT*</u>, <u>NUSTEC</u>...
 Talk by Julia Tena Vidal (Friday)
- Good communication to remove misunderstanding language, tools, approximations...

Particle physics will be better with the help from nuclear physicists and others!

High-intensity, high-precision experiments - Summary

Theorists and experimentalists can work together to make particle physics better!

Conclusion: We must discover new physics with neutrinos!

Effective communication is the key for the new physics discovery

Cross-disciplinary effort is important - Particle physics, astrophysics, nuclear physics, and more

Healthy Theory-Experiment relationship is important
Open data, open software
Joint Theory-Experiment workshop

Enjoy the conference!

Thank you for listening!

Acknowledgements: Carlos Argüelles, Matheus Hostert, Malcolm Fairbairn, Chris McCabe, Stephen Dolan, Kajetan Niewczas, Stefan Söldner-Rembold, David Caratelli, Vishvas Pandey, Yu-Dai Tsai, Livia Ludhova, Rex Tayloe, Javier Menendez, Josh Spitz, Tatsuya Kikawa, Akitaka Ariga, Kevin McFarland, Matt Green, Julia Tena Vidal, Yota Hino, Beda Roskovec, Luis Alvarez Ruso, JP Athayde Marcondes de Andréand King's College London Experimental Particle and Astroparticle Physics group.

Low-energy, long propagation neutrinos

Supernova neutrinos

- Long baseline accumulates new physics effect

$$P \sim exp(-\Gamma \cdot L), \qquad \Gamma \sim \frac{g^2 m^2}{F}$$

- Core collapse supernova neutrinos and DSNB will be the great test to look for neutrino decays and other neutrino properties Atm + LBL (w

FASERnu, J. Phys. G, 50(2023)030501, ArXiv:2403.12520, Fieg,Kling,Schulz,Sjöstrand, PRD109(2024)016010 Falkowski,González-Alonso,Kopp,Soreg,Tabrizi, JHEP10(2021)086

Talk by Albert De Roeck (Friday)

High-energy, high-precision experiments

Collider neutrinos

- High energy beam dump experiments
- Forward production
- Searches of neutrinophillic mediators and particles
- Weak EFT framework

Snowmass21, EPJC83(2023)15, Snowmass, JHEA36(2022)55, COST Action CA18108 PPNP125(2022)103948 IceCube, Nature Phys. 18, 1287 (2022), Stecker, Scully, Liberati, Mattingly, PRD91(2015)045009, Amelino-Camelia, Di Luca, Gubitosi, Rosati, D'Amico, Nature Astronomy (2023)

High-energy, long propagating neutrinos

Violation of Lorentz invariance

- Neutrino interacting with vector fields in vacuum
- Matter potential in vacuum, but very small New physics $< M_{Planck}^{-1}(GeV^{-1}), M_{Planck}^{-2}(GeV^{-2}) \cdots$
- Energy spectrum, arrival time, flavor are affected

Motivation

- String theory
- Loop quantum gravity
- Horava-Lifshitz gravity
- Lee-Wick theory
- Non-commutative field theory

Test of Lorentz violation with neutrinos

IceCube flavor ratio measurements

IceCube 1st flavour ratio result (0.0:0.2:0.8)

2018 flavour ratio measurement

- Likelihood is very shallow and fit often confuses between ν_e and ν_τ

- Flavour ratio result has some power to distinguish ν_e and ν_τ

Energy dependence of flavor ratio

Muon neutrino increases at higher energy

Future higher-statistics flavor measurement

Rasmussen, Lechner, Ackermann, Kowalski, Winter, PRD96(2017)083018

New physics flavor ratio predictions

New physics models have different flavor ratios

Effective operator

- It includes Lorentz violation
- Assuming all possible standard production models, $(v_e:v_u:v_\tau) = (x:1-x:0)$, it covers 2/3 of the phase space.

 $\xi_{\mu+\bar{\mu},\oplus}$

0.2

0.2

MicroBooNE, PRD106(2022)092006, PRL132(2024)041801, ArXiv:2312.13945, de Gouvêa, Fox, Harnik, Kelly, Zhang, JHEP01(2019)001, T2K, PRD100(2019)052006, Snowmass2021 J.Phys.G50(2023)020501,Batell, Berger, Ismail, PRD100(2019)115039

High-intensity, high-precision experiments

Heavy neutral leptons (HNLs)

- Produced at the NuMI beam dumps
- Delayed from neutrino spill
- Weaker limit for Dirac (HNL $\rightarrow \mu^{-}\pi^{+}$ only)
- $m_{\pi} + m_{\mu} < m_{HNS} < m_K m_{\mu}$

40

MicroBooNE, PRD106(2022)092006, PRL127(2021)151803, Bhanderi, PhD thesis (Manchester) Batell, Berger, Ismail, PRD100(2019)115039

High-intensity, high-precision experiments

Higgs Portal Scalars (HPSs)

- Production at the NuMI beam dump
- Life time $\propto 1/\theta^2$
- $2m_{\mu} < m_{HPS} < 2m_{\pi^o}$

High-intensity, high-precision experiments

Dark trident

- Dark matter pairs produced at the NuMI beam dump

- Dark matter particle scatter off a dark photon, then it decays (dark trident event)

CCM, PRL129(2022)021801, PRD106(2022)012001:107(2023)095036:109(2024)095017

High-intensity, high-precision experiments

(PMT-instrumented LAr cryostat)

High-intensity, high-precision experiments

IsoDAR

IsoDAR axion-like particle sensibility

 10^{-3}

Magill, Plestid, Pospelov, Tsai, PRL122(2019)071801, ArgoNeuT, PRL124(2020)131801 Gan, Tsai, ArXiv:2308.07951, CONNIE and Atucha-II collaborations, arXiv:2405.16316

High-intensity, high-precision experiments

Millicharged particles (mCP)

- Important in cosmic evolution

- Theoretically motivated

mCP Dark Matter 0.4% of DM are mCP unless stated otherwise LEP 10-1 10-2 Proto MQ ArgoNe ORMOS 10-3 10^{-4} 10-10-1 10^{1} 10² 10 Particle Mass m_y [GeV]

ArgoNeuT millicharged particle candidate event

30 cm Collection plane wire

Millicharged particle searches by ₁₀current and future experiments

CONNIE/Atucha-II mCP search

perspective

A century of physics

Roberta Sinatra, Pierre Deville, Michael Szell, Dashun Wang and Albert-László Barabási

An analysis of Web of Science data spanning more than 100 years reveals the rapid growth and increasing multidisciplinarity of physics — as well its internal map of subdisciplines.

"Nuclear and particle physics are not only the most self-referential subfields, but are also separated by significant citation barriers from most other subfields. This isolation brings significant impact penalties: papers in those areas burn out very fast and have much lower ultimate impact than other subdisciplines"

Observed

Expected

PACS 60 (676,000)

Condensed matter:

structural, mechanica

and thermal properties

PACS 10 (284,000)

PACS 20 (154,000)

Nuclear physics

46

The physics of

elementary

fields

particles and

CM:EMO

CM:SMT

PACS 00 (538,000)

PACS 90 (110,000)

and astrophysics

Geophysics, astronomy,

General physics

20×

