Unveiling neutrino interactions with new electron scattering data

> Julia Tena Vidal at Tel Aviv University on behalf of the e4nu and CLAS collaborations

European Research Counc Established by the European Commission

Unveiling new electron-scattering data

Huge increase in data base for hadron electroproduction

1-6 GeV electrons for many targets (e.g. carbon, **argon**)

New *eaj* measurements unveiled in this talk

Unveiling new electron-scattering data

Huge increase in data base for **hadron electroproduction**

1-6 GeV electrons for many targets (e.g. carbon, **argon**)

New *eal* measurements unveiled in this talk

Electrons for neutrinos ($\overline{e}\overline{4}\overline{V}$)

- Same nuclear ground state
- Same Final State Interactions(FSI)
- Similar interactions with nuclei
 - CC weak current [vector + axial]

•
$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu} \gamma^5) u$$

• EM current [vector]

•
$$j_{\mu}^{em} = \bar{u} \gamma^{\mu} u$$

Useful to constrain v –A model uncertainties

- Monochromatic beam
- High statistics

Useful to test energy reconstruction methods

Neutrino event generators need constraints

Complex theoretical picture

e-A/v-A not always treated consistently

NEUT

GiBUU

Neutrino event generators need constraints

Mostly inclusive models

Ad-hoc hadron production – not constrained by data Lack hadronproduction data

Neutrino event generators need constraints

Need more exclusive data!

	Jefferson Lab				
Hadron production with CLAS		rs			
	CLAS6	CLAS12			
Run years	1996-2013	2017 - ?			
Luminosity	$10^{34} \ cm^{-2} s^{-1}$	$10^{35} cm^{-2} s^{-1}$			
Targets	⁴ He, C & Fe	H, D, ⁴ He, C, (O), 4°Ar and more			
Beam Energy	1.1, 2.2, 4.4 GeV	(1), 2, 4, 6 GeV			
Electron acceptance	$ heta_e > 15^\circ$	$ heta_e > 5^\circ$			
Solid angle coverage	$\sim 2\pi$	$\sim 3\pi$			
Magnetic field	\checkmark	\checkmark			
Particle thresholds	150 (300) MeV/c for π^{\pm} (p/ γ)	200 (400) MeV/c for π^{\pm} (p/n)			
Events	~10M C(e,e') events	~100M 4ºAr (e,e') events			

Matan Goldenberg

Consistent with previous measurements

Different nuclear structure!

Ar

Matan Goldenberg

Different nuclear structure!

Ar

- Probability that a struck proton leaves the nucleus without significant re-scattering
- Complement to hadron nucleus interaction
- Study proton FSI similarly to neutrino scattering Sensitive to both FSI and nuclear structure (PRD 104 053006 (2021)) Strong need for new data, especially at low proton momentum

Define a more data driven transparency analysis informed by theory

 $\mathbf{T}_{A} = \mathbf{N}(\mathbf{e},\mathbf{e'p})_{\mathbf{o}\pi} / \mathbf{N}(\mathbf{e},\mathbf{e'})_{QEL}$

Using MC to determine QE dominated regions and correct for other contributions

Most previous transparency analyses measured $T_A = (e,e'_{1}p)_{o\pi}/(e,e'_{1}p)_{PWIA}$

Data not described by GENIE

p

 e^{-}

Noah Steinberg

 e^{-}

Transparency decreases with A

Simple nuclear models don't describe data – Spectral Function preferred No evidence of problems with GENIE FSI

First two nucleon analysis

2p vs **1n1p**, $o\pi$ and $o\gamma$

- New sensitivity to nuclear effects
 - Different processes contribute
 - Easily separated with kinematics
- Background to $1po\pi$ topology

Direct implications to neutrino experiments

Short-Range

See Alon Sportes poster!

19

First two nucleon analysis

See Alon Sportes poster!

2p vs **1n1p**, $o\pi$ and $o\gamma$

- 6 GeV on Carbon with CLAS12
- More targets and energies to come
- Particle thresholds
 - 200 (400) MeV/c for π^{\pm} (p/n)
 - No Background subtraction

First direct look at neutrons

First two nucleon analysis

See Alon Sportes poster!

- Statistically inconclusive
- Ratio decreases when RES dominates more 2p
- Ratio increases when DIS dominates more 111p

Pion production in GENIE

GENIE RES model

- Berger-Sehgal to model each resonance
 - Model predicts momentum transfer
 - Resonance decayed into hadrons
- No interference between RES (& Non-RES)

GENIE Non-RES model

- DIS model (Bodek-Yang) @ W<1.7 GeV
- Scaled with ad-hoc free parameters
- Not tuned to electron data

Proton (e,e') 4.499 GeV, $\theta = 4^{\circ}$ GENIE G18_10a 200 RES **Non-RES/DIS** 100 1.5 0.5 $100^{-6.999} \text{ GeV}, \theta = 4^{\circ}$ $\frac{d^2\sigma}{d\Omega \ dE} \ [\mu b/sr/GeV]$ **Over-predicting** data 50 0.5 1.5 9.993 GeV, $\theta = 4^{\circ}$ 40 PhysRevD.103.113003 20 1.5 0.5 Energy Transfer [GeV]

by Caleb Fogler

CLAS12 forward detector

D(e,e' π^{\pm}) cross-section

- Deuterium @ 4.2 GeV
- Multi-differential
 - Q², W, P_{π} , $\theta_{\pi q}$
- Compared against
 - GENIE (G18_10a)
 - OnePiGen
 - Single pion event generator
 - MAID2007 model

Higher $\theta_{\pi q}$

C(e,e'1p1 π^{\mp}) cross-section

by Julia Tena Vidal

First look at $1p1\pi^{-}$ and $1p1\pi^{+}$

with no detected γ any number of neutrons

Contain π^{\mp} below 150 MeV & π^{0} below 300 MeV

1.1, 2.2 and 4.4 GeV on C

needs two or more nucleons → undetected particles (FSI!) possible at the free nucleon level

Testing (e,e') models made exclusive

- Wrong normalization
 - Due to untuned non-RES
- Pion momentum shape agrees with GENIE
 - FSI essential
- Incorrect low proton momentum shape

29

 $\alpha_{T}^{had} [deg]$

e4nu unveils electron-nucleus interactions

- Huge increase in data base for **electron hadroproduction**
- CLAS can measure many particle final states with magnetic field
- 1-6 GeV electrons for many targets (e.g. carbon, argon)

Analyses of (e,e'), and 1 and 2 nucleon and π^{\mp} production data in progress

Significant impact on neutrino physics

Very high statistics (~100M events) and known beam energy, provides...

- Best constraints on nuclear structure and FSI models
- Vector part of the vector+axial nuclear response
 Event generators benefit greatly from these new data

Thank you for your attention!

More data on the way... New collaborators welcome to maximize impact!

The GENIE event generator

http://tunes.genie-mc.org

• ν-A, e[±]-A and h-A event generator

- From MeV to PeV, all targets
- All interaction mechanisms and targets

Full description for electrons

- Originally developed for neutrinos
- **Common code** for *v*-A, *e*⁻-A processes

GEM21_11a (SuSAv2), e-12C data

Generators need hadron production data

- Many assumptions from (e,e') to (e,e'X) – description not guaranteed
 - Common with neutrinos
- Lacking exclusive hadron production measurements!
 - Growing interest in the electron community
 - limited to specific kinematics
 - Big effort in the neutrino community
 - But more difficult

High quality new data gives additional constraints to simulation

Complementary efforts

Collaborations	Kinematics	Targets	Scattering	Publications	
E12-14-012 (JLab)	$E_e = 2.222 \text{ GeV}$	Ar, Ti	(e,e')		
(Data collected: 2017)	$ heta_e=$ 15.5, 17.5,	AI, C	(e, e'p)	Phys. Rev. C 99, 054608	
	20.0, 21.5			Phys.Rev.D 105 112002	
laffarran Lah	$ heta_p =$ -39.0, -44.0,				
Jerrerson Lab	-44.5, -47.0				
	-50.0				
e4nu/CLAS (JLab)	$E_e =$ 1, 2, 4, 6 GeV	H, D, He,	(e, e')		
(Data collected: 1999, 2022)	$ heta_e > {\sf 5}$	C, Ar, ⁴⁰ Ca,	e,p,n,π,γ	Nature 500 565	
		⁴⁸ Ca, Fe, Sn	in the final state	Phys.Rev.D 103 113003	
Jefferson Lab	Only effort with data already taken and expected exclusive measurements, best covera				
A1 (MAMI)	$E_e = 1.6 \mathrm{GeV}$	H, D, He	(e, e')		
(Data collected:2020)		C, O, Al	2 additional		
(More data planned)		Ca, Ar, Xe	charged particles		
LDMX (SLAC)	$E_e = 4.0 \mathrm{GeV}$		(e, e')		
(Planned)	$ heta_e <$ 40		e,p,n,π		
JLAC			in the final state		
eALBA	$E_e=$ 500 MeV	C, CH	(e,e')		
(Planned) ALBA	- few GeV	Be, Ca			

Adaptation from Proceedings of the US Community Snowmass2021

arXiv:2203.06853v1 [hep-ex] A NF06 Contributed White Paper

CLAS6

- Large acceptance @ $\theta_e > 15^\circ$
- ~" 2π " coverage
- Charged particle threshold comparable to neutrino tracking detectors
 - 300 MeV/c for p and γ
 - 150 MeV/c for π^{\pm}
 - Magnetic field disentangles charge
- Beam energies of interest for v:
 - 1.1, 2.2 & 4.4 GeV
- Targets ⁴He, C & Fe
- $\sim 10M C(e,e')$ events

CLAS12 – sub-systems in the FD and CD

Forward Detector (FD):

- High Threshold Cherenkov Counter (HTCC)
- Drift Chambers (DC)
- Low Threshold Cherenkov Counter (LTCC)
- Forward Time-Of-Flight detector (FTOF)
- Ring Imaging Cherenkov detector (RICH)
- Electromagnetic Calorimeters (EC & PCAL)

Central Detector (CD):

- Central Vertex Tracker (CVT)
- Central Time-Of-Flight (CTOF)
- Central Neutron Detector (CND)
- Back Angle Neutron Detector (BAND)

https://doi.org/10.1016/j.nima.2020.163419

Generalizing Background Subtraction

Not full " 4π " coverage

- Gaps between the sectors
- Gaps within a sector
- "Data driven" background subtraction
- Multi-particle correction

Data Driven Background Subtraction

- Using measured (e,e' $1p_1\pi$) events
- Rotate p,π around q
- Determine event acceptance
- Subtract (e,e' $1p1\pi$) contribution

Julia Tena Vidal

e4nu 1poπ Event Selection

Focus on Quasi Elastic events:

1 proton above 300 MeV/c

no additional hadrons above detection threshold: 150 MeV/c for $P_{\pi^{+/-}}$ 500 MeV/c for $P_{\pi^{0}}$

Incoming (e,e')oπ Energy Reconstruction

Cherenkov detectors:

Assuming QE interaction

Using lepton only

 $E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$

Tracking detectors:

Calorimetric sum

Using All detected particles

$$E_{\rm cal} = E_l + E_p^{\rm kin} + \epsilon$$

 ϵ is the nucleon separation energy ~ 20 MeV

Incoming Energy Reconstruction

Nature 599, 565 (2021)

Afroditi Papadopoulou

Mariana Khachatryan

Incoming Energy Reconstruction

Afroditi Papadopoulou

Mariana Khachatryan

Reconstructed (e,e'p)1poπ Calorimetric Energy

Reconstructed (e,e'p)1poπ Calorimetric Energy

Nature 599, 565 (2021)

Reconstructed (e,e'p)1poπ Calorimetric Energy

Nature 599, 565 (2021)

Focusing on different reaction mechanisms Standard Transverse Variables

Nature **599**, 565 (2021)

pT sensitivity to interaction mechanisms

Nature **599**, 565 (2021)

MC vs. (e.e'p) Transverse Variables

Peak reconstructed if measured particles are full final state Tail due to missing particles, not well described

- α : fine-structure constant
- E_e : beam energy
- $\theta_{e'}$: outgoing electron scattering angle

^{6/17/24} 2N analysis – goal and event selection

Goal: comparing 2p and 1n1p

Full signal selection (based on detector constraints!):

Part	icles	Sub- detector	Momentum thresholds* [GeV/c]	2 p	1 n 1p		
е	_	FD	None	One e	ectron		
π	±	CD & FD	0.2	No charged pions			
)	/	FD	0.3	No photons			
SL	Se FD			One proton ($\equiv pFD$)	None		
leoi	P	CD	0.4	One proton ($\equiv pCD$)	One proton ($\equiv pCD$)		
Nuc]	n	FD	0.4 lower & <i>E_{beam}/c</i> upper	Any number of neutrons; all of them are ignored	Any number of neutrons; considering only the <i>leading</i> ($\equiv nFD$)		
Anyt	thing se	CD & FD	None	Ignored; no constraints			

*Refined thresholds will be used in future analyses

FD nucleon momenta

6/17/24

Opening angle between q and P_{nuCFD} $(\theta_{q,P_{nuCFD}})$

• $\theta_{q,P_{nucFD}}$ – inversely related to $|P_{nucFD}|$

6/17/24

nFD = FD neutron	pFD = FD proton	<i>nucFD</i> = FD nucleon
------------------	-----------------	---------------------------

Opening angle between q and P_{nuCFD} $(\theta_{q,P_{nuCFD}})$ – zoom-out

• $\theta_{q,P_{nucFD}}$ – inversely related to $|P_{nucFD}|$

6/17/24

nFD = FD neutron	pFD = FD proton	<i>nucFD</i> = FD nucleon
------------------	-----------------	---------------------------

¹²C simulation and data at $E_{beam} \simeq 6 \text{ GeV}$

56

New Results – Nuclear Transparency

- Take advantage of lepton-hadron correlations in QEL scattering
- Slice data in θ_e to pick out regions of Pp

New Results – Nuclear Transparency

New Results – Nuclear Transparency ^{2.261 e-12}C

- Take advantage of lepton-hadron correlations in QEL scattering
- Slice data in θ_e to pick out regions of Pp
 - Cut on ω to pick QE dominated regions

New Results – Nuclear Transparency

• (e,e'p) is a subset of (e,e') cut on θ_{pq} and \mathbf{P}_{p} to isolate QE and minimal FSI regions

Where is the acceptance correction working? Proton theta distributions

Black: Uncorrected Data Blue: Acceptance Corrected Data Red: Acceptance Correction Facto

Range 2 Sector 1

Proton Transparency - Systematics

helium $\%$ error	Stat.	Bkgd Subt.	2p2h norm.	Acceptance	Cut	Sector	SRC	Total
2.261 GeV Range 1	0.1	0.34	0.07	0.11	0.65	0.1	2.0	2.14
2.261 GeV Range 2	0.26	0.36	0.07	0.15	1.36	1.8	2.0	3.1
2.261 GeV Range 3	0.66	0.42	0.12	0.50	0.88	0.1	2.0	2.4
4.461 GeV Range 4	1.1	0.84	0.11	0.56	1.8	4.4	2.0	5.4
carbon % error	Stat.	Bkgd Subt.	2p2h norm.	Acceptance	Cut	Sector	SRC	Total
2.261 GeV Range 1	0.23	0.54	0.56	0.37	2.76	0.77	2.0	3.6
2.261 GeV Range 2	0.30	0.37	0.53	0.31	2.03	1.7	2.0	3.5
2.261 GeV Range 3	1.1	0.49	0.89	0.56	2.79	0.1	2.0	3.8
$4.461~{\rm GeV}~{\rm Range}~4$	4.0	1.0	1.1	0.5	0.83	7.1	2.0	8.6
iron $\%$ error	Stat.	Bkgd Subt.	2p2h norm.	Acceptance	Cut	Sector	SRC	Total
2.261 GeV Range 1	1.4	0.62	0.74	0.58	2.83	4.1	2.0	5.7
2.261 GeV Range 2	2.3	0.64	1.0	0.41	3.79	8.03	2.0	9.4
2.261 GeV Range 3	4.4	0.56	1.1	0.64	3.36	18.0	2.0	19.0

Proton Transparency

Proton Transparency – Spectral Function

Not yet included (*)

$1p1\pi$ systematics

Systematic Error	1.1 GeV	2.2 GeV	4.4 GeV
Acceptance correction	<3 %	<2 %	<2 %
Bkg. Closure Test	<6 % (*)	<10 % (*)	<15 % (*)
Geometrical Acceptance	(*)	(*)	(*)
XSec Angular dependence	1 %	1 %	1 %
Photon identification cuts	0.5 %	0.5 %	2 %
Sector-to-Sector	<1 %	<5 %	<6 %
Normalization	1 %	1 %	1 %
Radiative correction	5 %	5 %	5 %
Total	<7 %	< 15 %	< 17 %

Radiative Correction

Accounts for [PhysRevC.64.054610]:

- Incident electron radiation
 - changes the incident flux
- Outgoing electron radiation
 - changes the observed energy transfer
- Vertex corrections
 - change the cross section (i.e., the weight) of the event
- Peaking approximation
 - Radiation emitted in the direction of travel
- Internal & external bremsstrahlung effects
- Neglects radiation by the emitted hadrons

Radiative Correction – $1p1\pi^{-1}$

Includes a 5 % systematic from pion radiation Propagated to the data systematics Using smooth distributions

Pion production nuclear effects

Free nucleon

• No missing transverse momentum!

$$\delta \vec{p}_T = \left| \vec{p}_T^{e'} + \vec{p}_T^{\Delta} \right| = 0$$

Pion production nuclear effects

Nucleus $\delta \vec{p}_T > 0$

- Nuclear structure
- Final state interactions

High θ_p possible only due to FSI (e,e'1p1 π^+) more sensitive to dynamics \rightarrow more shape change due to FSI ₇₀

