High-precision neutrino interaction measurements with MicroBooNE

Afroditi Papadopoulou, Argonne National Laboratory on behalf of the MicroBooNE collaboration XXXI International Conference on Neutrino Physics And Astrophysics, 21st June 2024

High-precision neutrino era

High-precision neutrino era

High-precision neutrino era

Crucial input from MicroBooNE cross-section program

• Liquid argon time projection chamber (LArTPC) at Fermilab

- Same detector technology as Short Baseline Neutrino (SBN) experiments and Deep Underground Neutrino Experiment (DUNE)
- Low detection thresholds and fully active tracking calorimeter

• Largest neutrino-argon data set to date with ~500k recorded neutrino events in 5y

• Already more than 20 published cross sections

Also see <u>David's talk</u>

Crucial input from MicroBooNE cross-section program

• Liquid argon time projection chamber (LArTPC) at FNAL

- Same detector technology as Short Baseline Neutrino (SBN) experiments and Deep Underground Neutrino Experiment (DUNE)
- Low detection thresholds and fully active tracking calorimeter
- Largest neutrino-argon data set to date with ~500k recorded neutrino events in 5y
- Already more than 20 published cross sections

• Leptonic and hadronic system modeling to accurately reconstruct neutrino energy

• Leptonic and hadronic system modeling to accurately reconstruct neutrino energy

• Constrain nuclear modeling uncertainties with pionless analyses

• Leptonic and hadronic system modeling to accurately reconstruct neutrino energy

• Constrain nuclear modeling uncertainties with pionless analyses

• π^0 production as background to ν_e appearance and Beyond Standard Model searches

• Leptonic and hadronic system modeling to accurately reconstruct neutrino energy

• Constrain nuclear modeling uncertainties with pionless analyses

• π^0 production as background to ν_e appearance and Beyond Standard Model searches

• Novel identification techniques for rare searches and challenging topologies

Leptonic and hadronic system modeling

• Oscillation measurements require accurate energy reconstruction of both lepton and hadron kinematics

"Easier" "Harder" Lepton Hadrons $E_{\nu} = E_{\ell} + \omega$

• Leverage LArTPC reconstruction and particle identification tools to obtain $E_{reco} \simeq E_{\nu}$

Leptonic and hadronic system modeling

• Oscillation measurements require accurate energy reconstruction of both lepton and hadron kinematics

"Easier" "Harder" Lepton Hadrons $E_{\nu} = E_{\ell} + \omega$

• Leverage LArTPC reconstruction and particle identification tools to obtain $E_{reco} \simeq E_{v}$

• Still need to correct for missing energy (E_{miss}) which might be large fraction of total energy balance

 $\omega = E_{had} + E_{miss}$

• Dedicated analyses developed to investigate both parts

Leptonic system modeling

- First three-dimensional cross-section result on argon
- Novel data-driven validation to detect potential missing energy mismodeling
- New paradigm of cross sections as a function of the neutrino energy (E_{ν})

Hadronic system modeling

- Leveraging low proton detection threshold to investigate events with and without detected protons
- Extensive data-driven model validation to detect potential biases
- Stressed need for sophisticated treatment of low energy hadron reinteractions

arXiv:2402.19216 accepted to PRD arXiv:2402.19281 accepted to PRL Poster #626

Nuclear effects with pionless analyses

Nuclear ground-state distributions

- Leverage high-quality LArTPC proton reconstruction and low proton detection thresholds (250 MeV/c)
- Probing nuclear ground-state distributions and hadron reinteractions on heavy argon nuclei
- Dedicated analyses investigating nuclear effects using transverse and generalized kinematic imbalance

Transverse kinematic imbalance

- First investigation of nuclear effects in two transverse kinematic imbalance variables simultaneously on argon
- Enables isolation of nuclear effects more completely than previous measurements in one variable
- Identification of phase space regions with sensitivity to nuclear ground-state distributions and hadron reinteractions

<u>Phys. Rev. Lett. 131, 101802 (2023)</u> <u>Phys. Rev. D 108, 053002 (2023)</u> <u>Poster #626</u>

Generalized kinematic imbalance

- Generalized to three dimensions by considering longitudinal component of missing momentum
- First-ever measurement reported on any nucleus in these novel variables
- Enhanced sensitivity to nuclear ground-state distributions and hadron reinteractions

<u>Phys. Rev. C 95, 065501 (2017)</u> <u>Phys. Rev. D 109, 092007 (2024)</u> Poster #626

Multi-proton kinematic imbalance

.....

0.9

0.8

0.7

0.6

• Poor agreement suggests that correlations between kinematic distributions are not well-modeled

arXiv:2403.19574 Poster #626

0

 $10^{-38} \text{ cm}^2/\text{deg}/\text{GeV}/\text{Ar}$

 $d^2\sigma/d\delta\alpha_Td\delta p_T$

0.35

0.3

0.25

0.2

0.15

0.05

.....

0.1

0.2

0.3

0.4

 δp_T (GeV)

0.5

GENIE v3.0.6 γ^2 /ndf = 1859/359

19

π^0 production measurements

- Significant role in ν_{e} appearance studies
- π^0 events are the dominant background for single photon and e⁺ e⁻ Beyond Standard Model searches
- Probed with neutral and charged current π^0 measurements

Neutral current π^0 production

- Dominated by $\Delta(1232)$ resonances
- First measurement in two π^0 kinematic variables simultaneously
- Systematic overprediction when compared to data

ν

Argon

Х

• Demonstrated sensitivity to form factor modeling and hadron reinteractions

Charged current π^0 production

- Dominated by $\Delta(1232)$ resonances
- Mismodeling identified in π^0 momentum and muon forward angles
- Shortcomings associated with low momentum transfer, consistent with observations on other targets

Novel identification techniques

High-precision era requires

- accurate understanding of cross sections of even rarest processes
- novel reconstruction and identification techniques

Designed dedicated analyses to address these needs

η meson production

- Powerful new probe of resonances beyond $\Delta(1232)$
- Enabled novel calibration source for electromagnetic showers in few-GeV region
- Invaluable input for proton decay channels $(p \rightarrow e^+\eta \text{ and } p \rightarrow \mu^+\eta)$

Λ baryon production

- First measurement with a LArTPC detector
- Very rare process due to Cabibbo suppression with only 5 observed events
- Invaluable input to hyperon interaction modeling and hyperon propagation in dense nuclear matter

Neutron identification

V_µ Argon X

- Challenging identification since neutrons mostly escape the detector without any visible signature
- Novel detection capability demonstrated using secondary proton tracks, applicable to any LArTPC
- Accounting for missing energy due to neutrons can mitigate uncertainty due to biases in energy reconstruction

Proton Inelastic Proton (8.5%) Other Particle (2.8%) Dirt (1,4%)

Summary

Argon

Х

- Diverse MicroBooNE cross-section program with novel high-precision measurements
- Exploring variety of analysis techniques and demonstrating sensitivity to expose mismodeling effects
- Analyses using our full data set (2x stats), electron neutrinos, and charged pions to follow soon!

Already Public Results

CC inclusive

- 1D ν_μ CC inclusive @ BNB, <u>Phys. Rev. Lett. 123, 131801</u>
- 1D ν_{μ} CC E_{ν} @ BNB, <u>Phys. Rev. Lett. 128, 151801</u>
- 3D CC E_y @ BNB, <u>arXiv:2307.06413</u>
- 1D v_e CC inclusive @ NuMI, <u>Phys. Rev. D104, 052002</u> <u>Phys. Rev. D105, L051102</u>
- 2D ν_μ CC0pNp inclusive @ BNB, arXiv:2402.19216, arXiv:2402.19281

Pion production

- ν_{μ} NC π^{0} @ BNB, <u>Phys. Rev. D 107, 012004</u>
- $2D \nu_{\mu} NC \pi^0$ @ BNB, <u>arXiv:2404.10948</u>
- $\nu_{\mu} CC\pi^{0}$ @ BNB, <u>arXiv:2404.09949</u>

$CC0\pi$

- 1D ν_e CCNp0π @ BNB, <u>Phys. Rev. D 106, L051102</u>
- 1D & 2D ν_µ CC1p0π transverse imbalance @ BNB, <u>Phys. Rev. Lett. 131, 101802</u>

Phys. Rev. D 108, 053002

- 1D & 2D ν_{μ} CC1p0 π generalized imbalance @ BNB, Phys. Rev. D 109, 092007
- 1D ν_{μ} CC1p0 π @ BNB, <u>Phys. Rev. Lett. 125, 201803</u>
- 1D ν_{μ} CC2p @ BNB, <u>arXiv:2211.03734</u>
- $1D \nu_{u}$ CCNp 0π @ BNB, <u>Phys. Rev. D102, 112013</u>
- 2D ν_{μ} CCNp0 π @ BNB, <u>arXiv:2403.19574</u>

Rare channels & novel identification techniques

- η production @ BNB, <u>Phys. Rev. Lett. 132, 151801</u>
- Λ production @ NuMI, <u>Phys. Rev. Lett. 130, 231802</u>
- Neutron identification, arXiv:2406.10583

Backup Slides

Leptonic system modeling

TABLE I. Comparisons between various models and the unfolded three-dimensional measurement.

Model Name	χ^2/ndf	
GENIE v2	741.1/138	
MicroBooNE model	326.1/138	
GENIE v3 untuned	322.2/138	
GiBUU	269.9/138	5
NEUT	243.4/138	dictio
NuWro	212.1/138	Prec
		Before Constraint

For Illustrative Purposes Only:

 (μ_{χ}, μ)

P, Measurement

After

arXiv:2307.06413

Leptonic and hadronic system modeling

Leptonic and hadronic system modeling

0pNp χ^2 (*ndf* = 22): μ BooNE tune = 50.8, GENIE = 61.5, NuWro = 46.4, GiBUU= 37.6, NEUT = 65.7

Transverse missing momentum $\delta \mathbf{p}_{\mathrm{T}} = |\mathbf{p}_{\mathrm{T}}^{\mu} + \mathbf{p}_{\mathrm{T}}^{\mathbf{p}}| = 0$

Orientation of the imbalance ($\delta \alpha_{T}$) also meaningful

Cross Section Extraction with Wiener SVD Unfolding

JINST 12 P10002 (2017)

Input Quantities

- Measurement (Data)
- Background (Cosmics + MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Cross Section Extraction with Wiener SVD Unfolding JINST 12 P10002 (2017)

Input Quantities

- Measurement (Data)
- Background (MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Probability that a generated event is reconstructed and selected

Diagonal matrix with flat ~6% efficiency

Cross Section Extraction with Wiener SVD Unfolding

Input Quantities

- Measurement (Data)
- Background (MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Includes information on statistical and systematic uncertainties

Uncertainties

- + Statistical (1.5%)
- + Number of argon targets (1%)

Total (11%)

Systematics-dominated analysis

Cross Section Extraction with Wiener SVD Unfolding

- Output quantities in regularized space
- Unfolded data spectrum
- Smearing Matrix A_C
 *Applied on theory predictions and included in data release

Cross Section Extraction with Wiener SVD Unfolding

- Output quantities in regularized space
- Unfolded data spectrum
- Smearing Matrix A_C

*Applied on theory predictions and included in data release

	0.0	-0.03	-0.06 0.05 0.0	9 0.08	0.03	0.00	0.10	0.22	0.27		1
ົວ	0.8	0.15 0.14 0.07 0.08	0.14 0.19 0.2	0 0.16	0.10	0.12	0.27	0.38	0.42		0.8
jeV/	0.6	-0.00 0.06 0.16 0.19	0.13 0.04 0.0	0 0.02	0.15	0.33	0.40	0.24	0.16	_	0.6
		-0.05-0.02 0.05 0.09	0.05 -0.02 -0.0	10.12	0.33	0.39	0.25	0.05	-0.04		0.0
δp	0.4	0.13 0.12 -0.03-0.05	-0.0 0.05 0.15 0.2 0.00 0.13 0.1	6 0.25 9 0.10	0.25	-0.03 -0.10	-0.04 -0.07	-0.04 0.01 -0.01	0.04	-	0.4
eco	0.2	0.03 -0.03 -0.08 -0.00 0.02 0.04 0.07 0.20	0.19 0.27 0.2 0.30 0.19 0.1	1 0.10 1 0.05	0.04 0.02	0.02 0.03	0.04 0.04	0.06	0.06	_	0.2
X	0.2	0.01 0.13 0.34 0.41 -0.01 0.15 0.34 0.25	0.21 0.03 -0.0 0.05 -0.04-0.0	1 0.00 5-0.02	0.04	0.04 0.04	0.01 0.01	-0.03 -0.03	-0.04 -0.04		0
	0,	0.22 0.32 0.20 0.07 0.61 0.52 0.20 0.08	0.04 0.01 0.0	4 0.07	-0.01	-0.01 -0.04	-0.02	0.01 0.01	0.01		U
	0 0.2 0.4 0.6 0.8 True $\delta p_T [GeV/c]$										

Transverse Missing Momentum δp_{T} Cross Section

- Extension to three dimensions by considering longitudinal component of missing momentum
- Leverage LArTPC calorimetric capabilities to reconstruct the incoming neutrino energy
- Demonstrated enhanced sensitivity to nuclear effects with simulation studies

Phys. Rev. C 95, 065501 (2017) Phys. Rev. D 109, 092007 (2024) add poster # p_n = total missing momentum vector q = momentum transfer vector α_{3D} = 3D orientation of missing momentum

• Extension to 3D by considering longitudinal component of missing momentum and calorimetric assumption on the incoming energy

B = 30.9 MeV

Phys. Rev. C 95, 065501 (2017)

arXiv:2310.06082

$$E_{\text{cal}} = E_{\mu} + K_{p} + B$$
$$\vec{q} = E_{\text{cal}}\hat{z} - \vec{p}_{\mu}$$
$$p_{L} = p_{L}^{\mu} + p_{L}^{p} - E_{\text{cal}}$$
$$p_{n} = |\vec{p}_{n}| = \sqrt{p_{L}^{2} + \delta p_{T}^{2}}$$
$$\alpha_{3D} = \cos^{-1}\left(\frac{\vec{q} \cdot \vec{p}_{n}}{|\vec{q}||\vec{p}_{n}|}\right)$$

46

<u>Phys. Rev. C 95, 065501 (2017)</u> Phys. Rev. D 109, 092007 (2024)

<u>Phys. Rev. C 95, 065501 (2017)</u> Phys. Rev. D 109, 092007 (2024)

Multi-proton kinematic imbalance

TABLE II. Overall χ^2 scores for each of the neutrino interaction models studied.

Model	χ^2 / 359 bins
GENIE 3.0.6	1859
NEUT 5.6.0	2582
MicroBooNE Tune	2673
GENIE 3.2.0 G21_11b	2947
GiBUU 2021.1	4836
NuWro 19.02.1	5315
GENIE 3.2.0 G18_02a	5724
GENIE 2.12.10	7799

π^0 production measurements

- π^0 events can mimic ν_e charged current events, but this is largely mitigated by dE/dx measurements and vertex separation
- Significant role in DUNE energy spectrum
- π^0 events form an irreducible background for single photon and e⁺ e⁻ Beyond Standard Model searches
- Need for extremely accurate modeling
- Tested with neutral and charged current π^0 measurements

 π^0

Х

- NuWro

1.0

NuWro FF1

NuWro FF1

 $M_{A} = 0.84$

+ Data

1.0

 $M_{A} = 1.05$

1.2 P_{n°} [GeV/c]

1.2

Pnº [GeV/c]

NuWro FF1

MA = 1.05

NuWro FF1

 $M_{A} = 0.84$

Charged current π^0 production

μ

53

Charged current π^0 production

arXiv:2404.09949

μ

Λ baryon production

TABLE II. Fractional covariance matrix between the uncertainties on the selection efficiency ϵ , the $\bar{\nu}_{\mu}$ flux Φ , and the predicted number of background events *B*.

	E	Φ	В	
e	0.04572	-0.00116	0.03237	
Φ	-0.00116	0.05339	0.01887	
B	0.03237	0.01887	0.33123	

<u>Phys. Rev. Lett. 130, 231802</u> add poster #

Neutron identification

Efficiency

0.6

0.5

0.4

0.3

0.2

0.

24.63%

71.45%

3.13%

0.75%

25.48%30.28%

26.51%

11.87%

Cosmic and MC EM (11.2%)

BNB Beam-Off Data (8.6%

BNB Beam-On Data

5.87%

Neutron End Process