

Jiangmen Underground Neutrino Observatory (JUNO)

- ◆ Proposed as a reactor neutrino experiment for mass ordering in 2008 (PRD78:111103,2008; PRD79:073007,2009)
 ⇒ driving the design specifications: location, 20 kton LS, 3% energy resolution, 700 m underground
- Rich physics program in solar, supernova, atmospheric, geo-neutrinos, proton decay, exotic searches
- Approved in 2013. Construction in 2015-2024

JUNO Site

Surface buildings / campus

- Office / Dorm
- Surface Assembly Building
- LAB storage (5 kton)
- Water purification / Nitrogen
- Computing
- Power station
- Cable train

Vertical Shaft, 564 m put into use in 2023

Slope tunnel, 1266 m

~ 650 m R_µ ~ 0.004 Hz/m² <E_µ> ~ 207 GeV

~200 people working onsite now

Acrylic Sphere:

Inner Diameter (ID): 35.4 m Thickness:12 cm

Stainless Steel (SS) Structure:

ID: 40.1 m, Outer Diameter (OD): 41.1 m 17612 20-inch PMTs, 25600 3-inch PMTs Water pool:

ID: 43.5 m, Height: 44 m, Depth: 43.5 m **2400** 20-inch PMTs

- ♦ 35.4 m spherical acrylic vessel, containing 20 kton LS, supported by the 41.1 m Stainless Steel structure via 590 supporting bars
- ◆ SS structure completed except bottom 4 layers
- Acrylic panel production completed
 - \Rightarrow A special production line for low backgrounds (< 1 ppt U/Th/K)
 - ⇒ Processed while maintaining high transparency (>96%) and low surface background (<5 ppt U/Th in 50 µm thickness): Shaping, sanding/polishing, cleaning, machining, and protection of panels by PE film

♦ Acrylic vessel construction on-going (critical path)

- ⇒ SS structure built from bottom to top, then, acrylic built from the top to bottom, layer by layer, 17/23 layers finished, defects repaired
- \Rightarrow SS bars connecting the acrylic and SS, sensors for stress monitoring

arXiv: 2311.17314 (2023)

Water Cherenkov + Top tracker

Water Cherenkov detector

- \Rightarrow 35 kton water to shield backgrounds from the rock
- ⇒ Instrumented w/ 2400 20-inch PMTs on SS structure
- ⇒ Water pool lining: 5 mm HDPE (black) to keep the clean water and to stop Rn from the rock, will cover w/ tyvek
- ⇒ 100 ton/h pure water system installed. Requirement: U/Th/K<10⁻¹⁴ g/g and Rn<10 mBq/m³, attenuation length>40 m, temperature controlled to (21±1) °C
- ◆ Top tracker (to be installed)

NIMA 1057 (2023) 168680

- \Rightarrow Refurbished OPERA scintillators
- \Rightarrow 3 layers, ~60% coverage on the top
- $\Rightarrow \Delta \theta \sim 0.2^{\circ}, \Delta D \sim 20 \text{ cm}$
- ♦ Earth Magnetic Field compensation coil

- 20-inch PMT: 15,012 MCP-PMT (NNVT) + 5,000 Dynode PMT(Hamamatsu)
 3.1-inch PMT: 25,600 Dynode PMT (HZC XP72B22)
 - \Rightarrow All PMTs delivered and their performance tested OK
- ◆ Water proof potting done: failure rate < 0.5%/6 years
- Implosion protection: acrylic top & SS bottom (JINST 18 (2023), P02013)

 \Rightarrow Mass production completed

	LPMT (20-in)		SPMT (3-in)	
	Hamamatsu	NNVT	HZC	
Quantity	5,000	15,012	25,600	
Charge Collection	Dynode MCP		Dynode	
Photon Det. Eff.	28.5%	30.1%	25%	
Dynamic range for [0-10] MeV	[0, 100] PEs		[0, 2] PEs	
Coverage	75%		3%	
Reference	Eur.Phys.J.C 82 (2022) 12, 1168		NIM.A 1005 (2021) 165347	

◆ LPMT electronics: 20012 channels

- ⇒ Dynamic range: 1- 4000 PE, Noise: <10%
 @1 PE, Resolution: <10% @1 PE, <1% @100 PE
- 1 GHz FADC in an underwater box (3 ch./box), connected to PMTs by water proof connectors
- ◆ Failure rate: < 0.5% / 6 years
- Joint test with PMT-electronics-DAQ-software: all installed PMTs and related systems work well!

- ♦ SPMT electronics: 25600 channels
- 200 underwater boxes, each for 128 PMTs read by ASIC Battery Cards (ABC), each with 8 CatiROC chips
- ♦ Joint test

ID#235, LS Purification	ID# 238, Optical charactr	
ID#472, OSIRIS	ID#618, OSIRIS hardware	10

◆ LAB + 2.5 g/L PPO + 3 mg/L bis-MSB

- \Rightarrow Attenuation length: LAB > 24m, LS > 20 m
- \Rightarrow Minimum U/Th requirement (for NMO) < 1e-15 g/g, aiming at 1e-17 g/g for solar and future 0vββ
- ♦ All 60 ton PPO delivered, U/Th < 0.1 ppt</p>
- **Bis-MSB** complete production soon (< 5 ppt)
- Plants commissioned individually and jointly
- ► 20 kton LAB to be delivered, U/Th ~ 1 ppq

ID#235, LS Purification	ID# 238, Optical charactr
ID#472, OSIRIS	ID#618, OSIRIS hardware

◆ LAB + 2.5 g/L PPO + 3 mg/L bis-MSB

- \Rightarrow Attenuation length: LAB > 24m, LS > 20 m
- \Rightarrow Minimum U/Th requirement (for NMO) < 1e-15 g/g, aiming at 1e-17 g/g for solar and future 0vββ
- ♦ All 60 ton PPO delivered, U/Th < 0.1 ppt</p>
- Bis-MSB complete production soon (< 5 ppt)</p>
- ♦ 20 kton LAB to be delivered, U/Th ~ 1 ppq
- Plants commissioned individually and jointly

Detector Final Cleaning Plan and LS Filling

Calibration and Expected Energy Resolution

- Four systems for 1D, 2D, 3D scan with multiple sources
- Energy scale and non-linearity will be calibrated to <1% using γ peaks and cosmogenic ¹²B beta spectrum

ID#320, Calibration strategy ID#283, Natural radioactivity

Calibration house

All systems ready for installation

0.5

0

0

2

Δ

13

10

E_{vis} [MeV]

8

6

Main goal: Measure the reactor neutrino spectrum (as a reference to JUNO)

- ⇒ better resolution to reduce fine structure effects and spectrum uncertainties
- ⇒ Improve nuclear database

◆ 10 m² SiPM + 2.8 ton Gd-loaded LS @-50°C

- \Rightarrow 700k/year@44m from the core (4.6 GW), ~10% bkg
- ⇒ Energy resolution: <2%/√E, 4500 p.e./MeV
- \Rightarrow SiPM (>94% coverage) w/ PDE > 50%
- \Rightarrow Operating at -50°C, dark rate 100k \rightarrow 100 Hz/mm²
- \Rightarrow 2.8 ton (1-ton FV) new type of Gd-LS for -50°C

Detector assembled at IHEP with ~100 SiPM tiles/readout (out of 4100 in total)

- ⇒ Temperature uniformity and stability OK!
- ⇒ Single PE readout

• Disassembling, to be re-installed in the Taishan Nuclear Power Plant in 2024

ID#308, JUNO-TAO overview

ID#369, Spectrum evolution

ID#279, SiPM mass testing

ID#319, TAO Reconstruction

arXiv:2005.08745

Precision Measurement of oscillation parameters

	Central Value	PDG2020	$100\mathrm{days}$	6 years	$20\mathrm{years}$
$\Delta m_{31}^2 \; (\times 10^{-3} \; {\rm eV}^2)$	2.5283	$\pm 0.034~(1.3\%)$	$\pm 0.021~(0.8\%)$	$\pm 0.0047 \ (0.2\%)$	$\pm 0.0029 \ (0.1\%)$
$\Delta m_{21}^2 \; (\times 10^{-5} \; {\rm eV}^2)$	7.53	$\pm 0.18~(2.4\%)$	$\pm 0.074~(1.0\%)$	$\pm 0.024~(0.3\%)$	$\pm 0.017~(0.2\%)$
$\sin^2 \theta_{12}$	0.307	$\pm 0.013~(4.2\%)$	$\pm 0.0058~(1.9\%)$	$\pm 0.0016 \ (0.5\%)$	$\pm 0.0010~(0.3\%)$
$\sin^2 \theta_{13}$	0.0218	$\pm 0.0007~(3.2\%)$	± 0.010 (47.9%)	± 0.0026 (12.1%)	± 0.0016 (7.3%)

 $\sin^2 2\theta_{12}, \Delta m_{21}^2, |\Delta m_{32}^2|$, leading measurements in 100 days; precision <0.5% in 6 years

Neutrino Mass Ordering

ID#506, NMO sensitivity

ID#335, IBD selection

10000 (000 4)

	arXIV:2405.	arXiv:2405.18008 (2024)		
	Design	Now		
Thermal Power	$36 \mathrm{GW}_{\mathrm{th}}$	26.6 GW _{th} (<mark>26%↓</mark>)		
Signal rate	60 /day	47.1 /day (<mark>22%</mark> ↓)		
Overburden	~700 m	~ 650 m		
Muon flux in LS	3 Hz	4 Hz (33% ↑)		
Muon veto efficiency	83%	91.6% (11% ↑)		
Backgrounds	3.75 /day	4.11 /day (10% ↑)		
Energy resolution	3.0% @ 1 MeV	2.95% @ 1 MeV (<mark>2%</mark> ↑)		
Shape uncertainty	1%	JUNO+TAO		
3σ NMO sens. Exposure	<6 yrs $ imes$ 35.8 GW _{th}	~6 yrs $ imes$ 26.6 GW $_{ m th}$		

- JUNO NMO median sensitivity:
 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure
- ◆ Combined reactor and atmospheric neutrino analysis in progress: further improve the NMO sensitivity (see next page→)

17

JUNO will be the first to study atmospheric neutrino oscillation with liquid scintillator:
 e/μ separation, ν/ν separation, ν energy (instead of lepton energy), track direction in LS

- Improving the reconstruction and PID algorithm, as well as sensitivity
- Plan to install all spare PMTs on top wall of the water pool to improve PID and direction reconstruction

- 60,000 ES and 600 NC/CC on ¹³C
- The largest ¹³C ES+NC+CC sample, ⁸B flux can be model-independently measured to 5% in 10 years (SNO 3%)

ID#286, ⁸B on ¹³C Astrophys. J 965, 122 (2024)

 For most background scenarios, JUNO will reduce the Borexino uncertainty on ⁷Be, pep, CNO flux measurement

ID#240, ⁷Be, pep, CNO JCAP 10, 022 (2023)

ID#330, ⁷Be and CNO directional

ID#392, supernova w/ SPMT

- ♦ 3 detection channels sensitive to all flavors
- Excellent capability for early warning
 - \Rightarrow 220~400 kpc with 50% probability

JCAP01 (2024) 057

ID#392, Monitoring

- ⇒ **pre-SN** 1.6 (0.9) kpc
- \Rightarrow 10~30 ms for typical 10 kpc

- Diffuse Supernova Neutrino Background
 S/B ratio improved from 2 to 3.5 with Pulse
 Shape Discrimination
 JCAP 10 (2022) 033
- Using the reference model: 3σ in 3 years and >5σ in 10 years

19

ID#477, DSNB

- ♦ After overcoming many challenges, JUNO construction is nearing completion. We anticipate finishing the construction in 2024 and start the detector filling
- ♦ High quality components will lead to high performance
- ♦ Well-prepared for data taking and physics

Not covered topics, c.f. JUNO posters

- Neutron source based reconstruction, ID#285
- Cosmogenic background in Te-LS, ID#299
- PMT Optical Model, ID#304
- Dual Calorimeter, ID#311
- On waveform Recon., ID#313
- (alpha,n) background, ID#322
- Sensitivity to invisible modes of neutron decay, ID#324
- Sensitivity to Geoneutrinos, ID#333 (also Livia's review talk)
- Tagging Correlated Events in a Small-Scale LS Detector, ID#347
- Unbinned Likelihood with GPU, ID#395

EPJ C 81 (2021) 11, 973

- A dedicated pre-detector to verify the radioactivity levels of LS
- ◆ 20 tons of LS in 3m-by-3m acrylic vessel, 76 MCP-PMTs, 3m of water shielding → first test run successful
- First batch of JUNO LS filled into the detector
 - U/Th tagging by Bi-Po-214 coincidence, which is now still dominated by $^{222}Rn \rightarrow$ have to wait several ^{222}Rn lifetimes (τ =5.5 days) to reach U/Th <10⁻¹⁵ g/g
 - Analysis for ¹⁴C, ²¹⁰Po, ... in progress

Backup: Cleanness of Environment

Average radon and cleanliness:

- Radon concentration: ~160 Bq/m³ in the EH, ~140 Bq/m³ in the LS hall
- Cleanliness: class 20,000

Radon concentration in air: $< 200 \text{ Bq/m}^3$

Backup: Nucleon Decays

Target mass: 20 kton LS \rightarrow 1.45 × 10³³ free protons, 5.30 × 10³³ bound protons/neutrons

 $\tau/B(p \rightarrow \overline{\nu} K^+) > 9.6 \times 10^{33} \text{ yrs} / 10 \text{ yrs}$ Best limit: 5.9 × 10³³ yrs from Super-K

CPC 47, 113002 (2023)

An order of magnitude improvement to the current best limits in 2 years data taking

arXiv: 2405.17792