NEOS-II updates

June 21 @

, Milano

Yoomin Oh on behalf of NEOS-II Collaboration

Neutrino Experiment for Oscillation at SBL

Key features

- commercial reactor.
- No self L resolution

Outline

- Reminder: NEOS-I and experimental apparatus
- NEOS-II goals
- NEOS-II result updates:
 - Extraction of antineutrinos from ²³⁵U and ²³⁹Pu.
 - Short baseline oscillation

A single, homogeneous IBD detector at a fixed distance (~24 m) from a

Oscillation analysis depending on existing model/longer baseline data.

NEOS-I result on SBL oscillation Comparison with Huber-Mueller, Daya Bay, and RENO

Yoomin Oh / NEOS

PRL 118 (2017) 121802 PRD 105 (2022) L111101

- Reactor ON: 180 days, OFF: 46 days.
- Daily IBD candidate rate: 1977 (ON) / 85 (OFF), S/B~22.
- vs Daya Bay reference:
 - Best fit at: (0.05, 1.7 eV²) $\Delta \chi^2 = 6.5$, *p*-value = 22%.
- vs RENO reference:
 - Considering oscillation at RENO, too.
 - Best fit at: (0.08, 2.4 eV²) $\Delta \chi^2 = 8.4, p$ -value = 8.2%.
- Distortion or "bump" not totally disappeared after the Daya Bay/ **RENO** normalization.
 - Differences in fission fractions?

From NEOS-I to NEOS-II Utilizing a full fuel cycle of a sole commercial reactor

- to find out that it was an statistical fluctuation?

• Improving sensitivity for the SBL oscillation: adding more significance to the NEOS-I best fit(s), or

Reactor-v spectrum evolution in time: extraction of the primary isotopes' (²³⁵U/²³⁹Pu) contribution.

Hanbit Nuclear Power Plant Yeonggwang (靈光: ghost light), Korea

黃海 Yellow sea

THE FEE

RENO near detector

1 . . .

2D

durg breeg

Neutrino source: Hanbit-5 reactor Low-enriched-uranium fuel / commercial / thermal power 2.8 GW

- A typical burn-up cycle takes about 1.5 years.
 - 1/3 of the fuel assemblies changed to new ones for a new cycle.
- Active core size diameter: 3.1 m, height: 3.8 m.
- NEOS detector located 23.7 m away from the active core center.
- main source.

Yoomin Oh / NEOS

The nearest neighboring core, Hanbit-4&6, at 256 m away, less than 1% contribution of the

Detector 1 kL of homogeneous Gd-LS for IBD target + shield

- Refurbished from NEOS-I detector.
 - Gd-LS newly produced—Gd: 0.5%wt.
 - LAB-based:Ultima Gold F = 9:1 for PSD.
- Target seen by 2×19 8-inch PMTs.
- B-PE (10 cm), Pb (10 cm), Muon counter.

- Calibration: ²²Na, ⁶⁰Co, ¹³⁷Cs, PoBe, ²⁵²Cf
- No γ-catcher layer:
 - Important to properly estimate γescaping effect.
 - 2-dimensional source calibration.

Data taking

Analysis highlights

- Corrections for:

IBD rate and spectrum

IBD yield and its evolution Extraction of ²³⁵U, ²³⁹Pu components

IBD spectrum decomposition

- Large statistical fluctuations in the ²³⁹Pu spectrum.
- Inconclusive for a sole isotope responsible for the bump.

SBL oscillation: negative result

• Best fit at $(\sin^2 2\theta, \Delta m^2) = (0.02, 0.4 \text{ eV}^2)$,

• $\Delta \chi^2 = \chi^2_{3\nu} - \chi^2_{4\nu} = 29.7 - 25.4 = 4.3$

Comparison with NEOS-I result

(sin²2 <i>θ</i> , ⊿m² /eV²)	X ²	Note
X	29.7	3v
(0.02, 0.4)	25.4	Best fit (this work)
(0.08, 2.4)	44.7	NEOS-I/RENO 1st best
(0.05, 1.8)	46.1	NEOS-I/RENO 2nd best
(0.14, 2.4)	77.1	RAA best

Summary **Results are being finalized**

- Measured IBD yield: $-2.7_{\pm 2.5\%}$ of Huber-Mueller-Vogel prediction.
- $(y_{235}, y_{239}) = (6.32_{\pm 0.17}, 4.70_{\pm 0.28}) \times 10^{-43} \text{ cm}^2/\text{fission}, y_{235}/y_{239} = 1.37_{\pm 0.08}$.
- No evidence for the short baseline oscillation from the 3+1v model.

