Present and future of direct neutrino mass experiments

Angelo Nucciotti

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

XXXI International Conference on Neutrino Physics and Astrophysics

June 16-22, 2024 Milan, Italy

The question of the neutrino mass

Direct neutrino mass measurements

model independent approach: study the kinematics of weak decays

beta and electron capture decays where $\overline{\mathbf{v}}_{\mathbf{e}}$ or $\mathbf{v}_{\mathbf{e}}$ are emitted

for nuclear β decay and **degenerate masses** (i.e. $m_{\text{light}} > \approx 0.1 \text{ eV} \rightarrow m_1 \approx m_2 \approx m_3$)

$$N(E_{\beta}) \approx p_{\beta} E_{\beta} (Q - E_{\beta}) \sqrt{(Q - E_{\beta})^2 - m_{\beta}^2} F(Z, E_{\beta}) S(E_{\beta})$$
 with $m_{\beta} = \sqrt{\sum_{i} m_{i}^2 |U_{ei}|^2} \equiv m_{\nu}$

Spectrometric direct neutrino mass experiments

- since 1970 direct measurements used **Tritium and spectrometric** approach
 - low endpoint: Q = 18.6 keV
 - fast super-allowed β decay: $\tau_{1/2}$ = 12.3 y
- various Tritium source types: solid and gaseuos

MAC-E filter with windowless gaseous T₂ source

→ ultimate integral spectrometer experiment running since 2019, completing data taking in 2025 sensitivity goal: 0.3 eV 90% CL

energy resolution <3 eV @18 keV. in 2022 m_{ν} < 0.8 eV 90% CL _{Nat. Phys.} 18, 160-166 (2022) new data in 2024 \rightarrow 0.5 eV sensitivity expected

Spectrometric direct neutrino mass experiments

- since 1970 direct measurements used **Tritium and spectrometric** approach
 - low endpoint: Q = 18.6 keV
 - fast super-allowed β decay: $\tau_{1/2}$ = 12.3 y
- various Tritium source types: solid and gaseuos

MAC-E filter with windowless gaseous T2 source

→ ultimate integral spectrometer experiment running since 2019, completing data taking in 2025 sensitivity goal: 0.3 eV 90% CL

energy resolution <3 eV @18 keV. in 2022 m_{ν} < 0.8 eV 90% CL _{Nat. Phys.} 18, 160-166 (2022) new data in 2024 \rightarrow 0.5 eV sensitivity expected

Direct measurements: future goals

determine mass scale from m_{β}

constrain the ordering for $m_{\beta} \leq 0.05 \text{ eV}$ (also from Δm_{ij}^2 , $|U_{ei}|^2$) A. A. Esfahani et al., Phys. Rev. C, 103 (2021) 065501

Statistics $\sigma_{\text{stat}}(m_{\beta}) \propto N^{-1/4}$

- source strength
- efficiency/duty cycle
- energy resolution
- background

Systematics $\sigma_{sys}(m_{\beta}) < \sigma_{stat}(m_{\beta})$

- atomic/molecular final states
- source
- background

Direct measurements: future goals

determine mass scale from m_{β}

constrain the ordering for $m_{\beta} \leq 0.05 \text{ eV}$ (also from Δm_{ij}^2 , $|U_{ei}|^2$) A. A. Esfahani et al., Phys. Rev. C, 103 (2021) 065501

for $\boldsymbol{m}_{\text{light}} \ll \mathbf{0.1 eV}$ $N(\boldsymbol{E}_{\beta}) \propto p_{\beta} \boldsymbol{E}_{\beta} (\boldsymbol{Q} - \boldsymbol{E}_{\beta}) \sum_{k} |\boldsymbol{U}_{ei}|^{2} \sqrt{(\boldsymbol{Q} - \boldsymbol{E}_{\beta})^{2} - \boldsymbol{m}_{i}^{2}} F(\boldsymbol{Z}, \boldsymbol{E}_{\beta}) S(\boldsymbol{E}_{\beta})$

Statistics $\sigma_{\text{stat}}(m_{\beta}) \propto N^{-1/4}$

- source strength
- efficiency/duty cycle
- energy resolution
- background

Systematics $\sigma_{sys}(m_{\beta}) < \sigma_{stat}(m_{\beta})$

- atomic/molecular final states
- source
- background

Direct vs indirect measurements: cosmology

present upper limits on m_{light} from cosmological observations

direct measurements can

- help confirming **\LambdaCDM** assumption
- provide $\boldsymbol{m}_{\mathsf{light}}$ as input for model analysis

Observable $m_{\Sigma} = \sum_{i} m_{i}$ from CMB, BAO, LSS, SN-Ia... Assumes **ACDM** Degeneracy with other observables $(h, A_{s}, sterile v, ...)$

N. Aghanim et al., A&A, 641 (2020)

- E. Di Valentino et al., Phys. Rev. D, 104 (2021) 083504
- D. Wang et al., arXiv:2405.03368 (!)

Direct vs indirect measurements: neutrinoless ββ decay

present upper limits on *m*_{light} from neutrinoless double beta decay searches

KamLAND-Zen Collaboration et al., Phys. Rev. Lett., 130 (2023) 051801

A. Nucciotti

Observable: $m_{\beta\beta} = |\sum_i m_i U_{ei}|^2$ $m_{\beta\beta} \leftrightarrow \tau_{\frac{1}{2}}$ of $\beta\beta0\nu$ of ^{136}Xe , ^{76}Ge , ^{130}Te ... Requires **Majorana neutrinos**

[°] Uncertainty on **m**_{light} due to

- Majorana phases ϕ_1 and ϕ_2 in U_{ei}
- nuclear matrix elements F_N
- axial coupling g_A

Direct measurements: alternatives for the future

D. Castelvecchi, "How heavy is a neutrino? Race to weigh mysterious particle heats up," Nature, Mar. 2024

KATRIN++

R&D program for a sensitivity on $m_{\beta} < 40 \text{ meV}$

- the Tritium Laboratory Karlsruhe TLK can handle 50 g of Tritium
- KATRIN's **MAC-E filter** and **WTGS** as platforms for R&Ds
- call to community for a collaborative effort at TLK

R&D objectives (until 2027)

differential spectrometry to improve statistical sensitivity

- \rightarrow higher measuring efficiency
- \rightarrow lower background
- atomic T source to reduce broadening and systematics
- \rightarrow only atomic excited state broadening

KATRIN++ demonstrators from 2028

KATRIN++

two R&D lines for **differential spectrometry** with $\Delta E_{\text{FWHM}} \approx 0.2 \text{ eV}$

- high-resolution low temperature detectors arrays ($\approx 10^6$ pixels)
- time-of-flight: single electron tagging (start/stop) is challenging
- other options from community?

- atomic T cooling&trapping
- atomic T absorbed on graphene
- \rightarrow potential for synergies and/or collaborations with Project8 and PTOLEMY

data

fit: E_{FWHM} = 25.77 ± 0.1558 eV

^{83m}Kr

Preliminary

A. Nucciotti

KATRIN++

two R&D lines for **differential spectrometry** with $\Delta E_{\text{FWHM}} \approx 0.2 \text{ eV}$

- high-resolution low temperature detectors arrays ($\approx 10^6$ pixels)
- time-of-flight: single electron tagging (start/stop) is challenging
- other options from community?

with Project8 and PTOLEMY

Neutrino 2024 - June 19, 2024 - Milano, Italy

and ToF

measurement

wrt B-field

credits: M.Schloesser

Bolometer array

^{83m}Kr

Preliminary

data

fit: E_{FWHM} = 25.77 ± 0.1558 eV

A. Nucciotti

CRES: Project8 and others

Cyclotron Radiation Emission Spectroscopy

B. Monreal and J. A. Formaggio, Phys. Rev. D 80, 051301 (2009)

cyclotron emission frequency

$$2\pi f(E_{\beta}) = \frac{eB}{E_{\beta} + m_e} = \frac{eB}{\gamma m_e}$$

energy resolution $\frac{\Delta E}{m_e} = \frac{\Delta f}{f}$

CRES technique demonstrated by **Project8** for electrons magnetically trapped inside a wave guide best energy resolution $\Delta E_{\text{FWHM}} = 1.7$ eV at 18 keV

^{83m}Kr internal conversion electron (K line)

Project8: phase II results

QTNM - Quantum Technologies for Neutrino Mass

CRESDA demonstrator apparatus for determining neutrino mass via CRES from tritium **first phase** (to 2025)

- quantum-noise-limited microwave sensors for a high resolution, high efficiency CRES
- magnetic field mapping with < 1 μT absolute precision and
 - \approx 1 mm spatial resolution using Rydberg states as quantum sensors
- demonstration of production and confinement of H/D atoms with densities of O(10¹² cm⁻³)

Tritium demonstrations at Culham (beyond 2025)

Final neutrino mass experiment with 0.01~0.05 eV m_v sensitivity (2030–2040)

19

PTOLEMY

project to detect the **Cosmic Neutrino Background** via neutrino capture on tritium

differential spectrometer combining:

- CRES to determine electron energy and pitch angle
- transverse drift filter to select and decelerate end-point electrons
- low temperature microcalorimeters for hi-res spectroscopy capture target is also a T source \rightarrow direct m_{ν} measurement
- $\rightarrow O(100 \text{ mV})$ sensitivities could be achievable with 1 µg T

 $m_{\text{lightest}} = 50 \text{ meV}$

Endpoint of spectrum

 $\Delta = 10 \text{ meV}$

10¹⁰

10⁸

106 -

 ${}^{3}T \rightarrow {}^{3}He + e^{-} + \bar{\nu}$

PTOLEMY

Full scale demonstrator with superconducting magnets

- magnet, drift filter and interfaces design
- end-to-end electron transport simulation
- to be installed at LNGS in 2025

R&D in progress on

- T loading on graphene
- CRES detection
- TES microcalorimeters for high res electron spectroscopy

neutrino mass sensitivity studies

- theoretical study of $\boldsymbol{\beta}$ decay spectral shape for T on graphene

poster 374 - Jun 18

J. V. Mead

investigation of alternatives to graphene

A. Apponi et al., J. Inst., 17 (2022) A. Apponi et al., Phys. Rev. D, 106 (2022)

Calorimetric experiments

ideal calorimetric experiment

- radioactive source embedded in the detector(s)
- only the neutrino energy escapes detection

 $\rightarrow \boldsymbol{E}_{c} = \boldsymbol{Q} - \boldsymbol{E}_{v}$

- no backscattering
- no energy losses in source
- no decay final state effects
- no solid state excitation
- low activity \rightarrow limited statistics
- pile-up background

calorimeter

ideal isotope has

- low *Q*
 - \rightarrow larger fraction *f* of decays in ROI
 - \rightarrow easier calorimetry
- for EC: capture peak close to Q
- short $\tau_{\frac{1}{2}}$

isotope	Q [eV]	τ _{1/2} [y]	decay	B.R.	experiments
³ Н	18592.01(7)	12	β-	1	Simpsons's
¹⁸⁷ Re	2470.9(13)	4.3×10 ¹⁰	β-	1	MANU, MIBETA
¹⁶³ Ho	2863.2(6)	4570	EC	1	Holmes, ECHo
¹³⁵ Cs	440	8.0×10 ¹¹	β-	1.6×10 ⁻⁶	-
¹¹⁵ In	155	4.3×10 ²⁰	β-	1.1×10 ⁻⁶	-

A. Nucciotti, Adv. High Energy Phys., 2016 (2016) 9153024 A. Nucciotti

for an udated analysis of low Q candidates D. K. Keblbeck et al., Phys. Rev. C, 107 (2023) 015504

Electron capture calorimetric experiments

 $^{163}\text{Ho} \rightarrow ^{163}\text{Dy}[\text{H}_{i}] + \nu_{a}$

 163 Dy[H_i] \rightarrow 163 Dy + E_c

- calorimetric measurement of Dy atomic de-excitations (E_c)
 - $Q = 2863.2 \pm 0.6 \text{ eV}$ Ch. Schweiger et al. Nat. Phys. (2024)
 - ▶ end-point rate and m_v sensitivity depend on $Q-E_b(M1)$

■ $\tau_{_{1/2}} \approx 4570$ years $\rightarrow 2 \times 10^{11}$ ¹⁶³Ho nuclei $\leftrightarrow 1$ Bq

Neutrino 2024 - June 19, 2024 - Milano, Italy

A. Nucciotti

Pile-up in ¹⁶³Ho EC calorimetric experiments

- accidental coincidences → complex pile-up spectrum
- calorimetric measurement → **detector speed is critical**
 - $\mathbf{N}_{pp}(E) = \mathbf{f}_{pp} \ N_{EC}(E) \otimes N_{EC}(E) \text{ with } \mathbf{f}_{pp} \approx \mathbf{A}_{EC} \mathbf{\tau}_{R}$

10 Q = 2.8 keV10⁻² 10-4 10⁻³ 10⁻⁴ ⊧ counts [a.u.] $N_{\rm EC}(E)$ 10⁻⁵⊧ 2500 3000 10⁻⁶ 10⁻⁷ E `10⁻⁸⊧ N_{pp}(E) 10⁻⁹ 10^{-10} 1000 2000 4000 3000 energy [eV]

 A_{EC} EC activity per detector T_{R} time resolution (\approx rise time)

Statistical sensitivity: pile-up and energy resolution

- Montecarlo simulations for statistical sensitivity with single-hole spectrum
- simulations confirm that sensitivity $\Sigma(m_{\nu})$ scales as $1/(N_{e\nu})^{1/4}$

A. Nucciotti, Eur. Phys. J. C 74.11 (2014)

A. Nucciotti

The ECHo and HOLMES experiments

low temperature microcalorimeter arrays with ion-implanted ¹⁶³Ho

scalable proof-of-principles for an experiment with ≤0.1 eV m_v sensitivity

Transition Edges Sensors TESs multiplexed TESs 1000 detectors 300 Bq(¹⁶³Ho)/pixel $\Delta E_{FWHM} \approx 1 \text{ eV}$ $\rightarrow \Sigma_{90\%}(m_{\nu}) < \approx 2 \text{ eV}$

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112

ECHo-1k

Magnetic Metallic Calorimeters MMCs $60 \sim 100$ detectors $1 \sim 5 \text{ Bq}(^{163}\text{Ho})/\text{det}$ $\Delta E_{\text{FWHM}} < 10 \text{ eV}$ $\rightarrow \Sigma_{90\%}(m_{\nu}) < \approx 20 \text{ eV}$

A. Nucciotti

ECHo-100k

multiplexed MMCs 12000 detectors 10 Bq(¹⁶³Ho)/det $\Delta E_{FWHM} < 5 eV$ $\rightarrow \Sigma_{90\%}(m_{\nu}) < \approx 1.5 eV$

Neutrino 2024 - June 19, 2024 - Milano, Italy

both started R&D around **2010** now running arrays with ≈60 detectors

≈1Bq/det of implanted ¹⁶³Ho

¹⁶³Ho isotope production

¹⁶²Er (n, γ) ¹⁶³Er $\sigma_{\text{thermal}} \approx 20 \text{ b}$ ¹⁶³Er \rightarrow ¹⁶³Ho + ν_{e} $\tau_{\frac{1}{12}} \approx 75 \text{ min}$

¹⁶²Er irradiation at **ILL nuclear reactor** (Grenoble, France) Ho chemical purification with ion-exchange resins in hot-cell side production of ^{166m}Ho

- β^- , Q=1.8 MeV, $\tau_{\frac{1}{2}}=1200$ y \rightarrow background in ROI
- ≈2 kBq(^{166m}Ho)/MBq(¹⁶³Ho)
 - \rightarrow requires mass separation

HOLMES and ECHo has collected ≈250 MBq of ¹⁶³Ho

Tm 163 1.81 h ^ε _β + γ 104; 69; 241; 1404: 1397	Tm 164 5.1 m 2.0 m ^μ γ ^{β+} 2.9 γ 91; γ 208; 1155; 215	Tm 165 30.06 h ^ε _β + γ243; 47; 297: 807	Tm 166 7.70 h ^ε β ⁺ 1.9 γ779; 2052; 184: 1274	Tm 167 9.25 d	$\begin{array}{c} Tm \ 168 \\ 93.1 \ d \\ \epsilon; \beta^+ \\ \beta^ \\ \gamma \ 198; 816; \\ 447 \end{array}$
Er 162 0.139	Er 163 75 m	Er 164 1.601	Er 165 10.3 h	Er 166 33.503	Er 167 2.3 s 22.869
σ _{n, α} <0.011	γ (1114) g	σ13 σ _{n, α} <0.0012	ε no γ	σ3 + 14 σ _{n. α} <7E-5	lγ 208 σ 650 e ⁻ σ _{n. e} 3E-6
Ho 161 6.7 s 2.5 h ¢ 726; 78 e ⁻	Ho 162 68 m 15 m ^μ 7 58; 38 ^φ ": ¢ 7 185; 38 1220; 283 937 ^φ ": ¢ 937 ^φ ": φ	Ho 163 1.1 s 4570 a	Ho 164 37 m 29 m β 1.0 γ 37; 57 e ⁻ e ⁻	Ho 165 100 σ3.1 + 58 σ _{n, α} < 2E-5	Ho 166 1200 a 26.80 h 107 β ⁻ γ 184; 1.9 810; 712 γ 3100 e ⁻
Dy 160 2.329 ^{ст 60} ст _{п. ст} < 0.0003	Dy 161 18.889 ^{σ 600} σ _{0, α} <1E-6	Dy 162 25.475 σ ¹⁷⁰	Dy 163 24.896 ^{σ 120} σ _{n. α} < 2E-5	Dy 164 28.260 or 1610 + 1040	$\begin{array}{c c} & Dy \ 165 \\ \hline 1.3 \ m \\ {}^{l_{Y} \ 108; \ e^-} \\ \pi^- 0.9; \\ 1.0 \\ \gamma \ 515 \\ \sigma \ 2000 \\ \sigma \ 3500 \\ \end{array} \begin{array}{c} \beta^- \\ \beta^- \\ \beta^- \\ \beta^- \\ \gamma \ 55 \\ \sigma \ 3500 \\ \end{array}$

H. Dorrer et al., Radiochimica Acta, 106 (2018) 535 S. Heinitz et al., PLoS ONE 13(8): e0200910

Mass separation and isotope embedding

^{166m}Ho must be separated by magnetic mass spectrometer requires high current, high source and geometrical efficiency

T. Kieck et al., Rev. Sci. Instrum., 90, 2019

ECHo: resonant laser ionization source

- RISIKO at Mainz University
- efficiency: (69 ± 5stat ± 4syst)%
- → demonstrated **A(¹⁶³Ho)**_{max}≈ **3 Bq/det** T. Kieck et al., NIM A, 945, 2019, 162602.

HOLMES: Ar plasma sputter ion source

- installed at INFN Genova
- efficiency ≈0.2%
- w/o triplet/XY-scan and chamber
- → A(¹⁶³Ho)_{max}≈ 1 Bq/det

Mass separation and isotope embedding

INFN Genova

Microcalorimeters arrays readout

TES and MMC readout by SQUIDs

high BW microwave multiplexing of rf-SQUIDs

Software Defined Radio (SDR) for heterodyne readout

D. T. Becker et al., JINST, 14 (2019) P10035 O. Sander et al., IEEE Trans. Nucl. Sci., 66 (2019) 1204

HOLMES → **256** detectors in 4 GHz: 1 RF line / 1 HEMT amplifier

For arrays of $\approx 10^6$ detectors

signal multiplexing \rightarrow reduced impact on cryogenic systems SDR \rightarrow low costs per channel with RFSoCs for telecommunication

500mK

50mK

HEMT

HOLMES high statistics measurement

A. Nucciotti

Neutrino 2024 - June 19, 2024 - Milano, Italy

HOLMES high statistics measurement: spectral shape

experimental EC spectrum deviates from all theoretical predictions

→ **phenomenological description** of the EC spectrum

- shake-up peaks and shake-off spectra
- strongly asymmetric Lorentzians (Fano-like interference?)

needed for assessing sensitivity of future ¹⁶³Ho experiments

end-point region is smooth and featureless

A. De Rújula et al., J. High Energ. Phys., 2016 (2016) 15
A. Faessler et al., Phys. Rev. C, 95 (2017) 045502
M. Brass et al.t, New J. Phys., 22 (2020) 093018
R. G. H. Robertson, Phys. Rev. C, 91 (2015) 035504

m_β

sensitivity?

HOLMES high statistics measurement: end-point analysis

HOLMES sensitivity evolution vs. pixel activity

goal of present run (single hole approximation)

now **upgrading ion implanter** with focusing stage and co-deposition chamber

 \rightarrow better uniformity and higher detector activity (starting with 3~5 Bq)

operate at **lower temperatures** to reduce the impact of implanted ¹⁶³Ho on detector performance

ECHo-1k status: detectors

2 64 detector modules with ¹⁶³Ho in Au and Ag host material parallel dc-SQUID readout

host	¹⁶³ Ho pixels	bkg pixels	(A) [Bq]	A _{tot} [Bq]
Au	23	3	0.94	28.1
Ag	34	6	0.71	25.9

A. Nucciotti

ECHo-1k status: 10⁸ events spectrum

• Bayesian end-point analysis in progress 10⁷ OII NII NI MII MI • 1.26×10⁸ events from detectors with ¹⁶³Ho in **Ag** host material Counts 1.0 eV 50 10⁶ • now preparing **ECHo-100k** 10⁵ 104 10 20 30 40 50 60 70 80 90 100 3d_{3/2} 3d_{5/2} Energy / eV Counts / 2.0 eV 10⁴ 14 cm mm 10³ 6 wafer for ECHo-100k 1000 data pixel 17 NEG - fit: *E*_{FWHM} = 2.92 ± 0.04 eV 800 counts / 0.1 eV 10^{2} -600 400 200 10¹ 5860 5880 5900 5920 energy / eV 10⁰ **poster 566** – Jun 21 **poster 336** – Jun 21 500 1000 1500 2000 2500 3000 3500 4000 L. Gastaldo L. A. Perez Energy / eV

A. Nucciotti

ECHo-1k status: 10⁸ events spectrum

Beyond ECHo and HOLMES: a sub-eV experiment

ECHo and HOLMES proved

- production of large and pure ¹⁶³Ho isotope samples
- efficient embedding technology
- large bandwith array multiplexed readout
- performing microcalorimeters with implanted absorber
- high duty-cyle high-statistics data taking
- spectrum endpoint analysis

Synergy with other EC experiments: BeEST

BeEST K.G. Leach and S. Friedrich, J. Low Temp. Phys. 209, 796 (2022)

study EC decay of 'Be implanted in low temperature detectors to search for

- sterile neutrinos with \approx 0.1-1 MeV masses
- other sub-MeV v-coupled particles
- also probe
- neutrino quantum properties
- precision nuclear and atomic structure

Beyond ECHo and HOLMES: a sub-eV experiment

10 years measuring time

Σ ₉₀ <i>m</i> _ν [meV]	200	100
A [Bq/det]	30	300
τ _R [μS]	1.0	0.1
f _{pp}	3.0E-05	3.0E-05
N _{det}	3.6E+06	5.8E+06
A total [Bq]	1.1E+08	1.7E+09
¹⁶² Er [mg] *	820	13200

 $* {}^{162}$ Er/A(163 Ho) = 3790 mg/GBg + 50% usage efficiency

A. Nucciotti

contacts are in progress for a collaboration for a **sub-eV** experiment

- increased pixel activity ≈ 100 Bg/det \leftrightarrow impact of ¹⁶³Ho heat capacity
- ¹⁶³Ho activity $\geq 10^8$ Bq \leftrightarrow implantation efficiency and precision
- about 1M pixels ↔ cost/channel
- estimated cost is only O(10M€)

Conclusions

direct neutrino mass experiments are unavoidable to assess the lightest neutrino mass

many options to go beyond KATRIN using tritium

- still in a R&D phase
- presently reaching 150 eV sensitivity on m_{β}

¹⁶³Ho-based experiments are a solid and readily available alternative

- low temperature calorimeters with different systematics
- individual projects are reaching order of 10 eV sensitivities on m_{β}
- ready to reach statistical sensitivities of order of 1 eV on m_{β} in few years
- potential to go beyond KATRIN with more R&D and a large international collaboration