

Direct neutrino-mass measurement based on 259 days of KATRIN data

XXXI International Conference on Neutrino Physics and Astrophysics

Alexey Lokhov on behalf of the KATRIN collaboration

> Karlsruhe Institute of Technology, Germany

Neutrino mass observables

Cosmological observables

Neutrinoless double β-decay

Neutrino mass in tritium β-decay

Measurement of effective mass *m*, based on kinematic parameters & energy conservation

Neutrino mass in tritium β-decay

Measurement of effective mass *m*, based on kinematic parameters & energy conservation

$$R_{\beta}(E) \propto (E_{0} - E)\sqrt{(E_{0} - E)^{2} - m_{\nu}^{2}}$$

$$m_{\nu} \stackrel{\text{def}}{=} \sqrt{\sum_{i=1}^{3} |U_{ei}|^{2} \cdot m_{i}^{2}}$$

Experimental challenges:

Ο

Ο

Ο

Ο

~ 2·10⁻¹³

0

 $m_v = 0 eV$

-1

 $E-E_0$ (eV)

-2

KATRIN: Karlsruhe Tritium Neutrino Experiment

The KATRIN experiment

Full system description & commissioning: KATRIN, JINST 16 (2021) T08015

KATRIN data releases

2019: *m*_{*v*} < 1.1 eV (90% CL)

2022: *m*_v < 0.8 eV (90% CL)

• ~6 Mio counts

Neutrino 2024:

- 259 measurement days
- **1757** *β*-scans
- ~36 Mio counts

Expected sensitivity < 0.5 eV

PRL 123 (2019) 221802 PRD 104 (2021) 012005

Nature Phys. 18 (2022) 160

nature phys

Data

59 stacked spectra with 27 + 28 + 14 x 28 + 28 + 14 x 28 + 14 x 25 + 14 x 28 1609 data points

36 Mio counts in total

Experimental improvements in new data (I)

Factor 2 lower background using "shifted analyzing plane" configuration

- Smaller volume mapped onto detector
- Inhomogeneous EM-fields
 - More segmented data x 14
 - Calibration of fields needed

Experimental improvements in new data (II)

Precise calibration measurements with ^{83m}Kr co-circulation:

- Probe of electric potential variation in the source
- Field mapping in the spectrometer
- Source temperature: 30K→80K

And with the **electron gun**:

- Energy loss through scattering
- Tritium gas density

Experimental improvements in new data (III)

In measurement campaigns 4 and 5:

- → Improved statistical sensitivity by optimized scan-time distribution
- → Eliminated trapped particle background by lowering pre-spectrometer voltage
- → Measured the residual tritium activity on the gold-plated rear wall and reduced it with ozone cleaning

Systematic uncertainties

- Statistical uncertainties dominate
- Significant reduction of the background-related systematics
- Better control over source scattering
 - Increased conservative uncertainties in this release
 - Reduced uncertainties in current data
- **Reduction** of the molecular **final-states** uncertainties
 - Reassessment of theoretical uncertainty estimation: S. Schneidewind et al., Eur. Phys. J. C 84, 494 (2024)

Analysis challenges

- Highly segmented data (1609 data points)
- Computationally **expensive** model evaluations
- 144 correlated systematic parameters
- Two independent analysis teams and frameworks
 - optimized model evaluation
 - fast model prediction with a neural network
- Double-layer blinding scheme
 - fixing analysis procedure on MC data
 - using model blinding, unknown modification of final states

Fit result

- Simultaneous maximum likelihood fit with common m_{ν}^{2} parameter
- Excellent goodness-of-fit: p-value=0.84

Fit result

• Best-fit value

18

Fit result

• Best-fit value

$$m_{\nu}^2 = -0.14^{+0.13}_{-0.15} \,\mathrm{eV}^2$$

- Negative *m*² estimates allowed by the spectrum model to accommodate statistical fluctuations
- Post-unblinding a data-combination mistake was uncovered →
 - Resolved by splitting **KNM4** into **two** data sets
 - \circ ~ 0.1 eV² impact on *m*²

Q-value: (18 575.0 ± 0.3) eV

Confidence interval

https://www.katrin.kit.edu/130.php#Anker0

• KATRIN's **new** upper limit

$$m_{\nu} < 0.45 \,\mathrm{eV} \ (90 \,\% \,\mathrm{CL})$$

using Lokhov-Tkachov construction

- Feldman-Cousins limit:
 - *m_v* < 0.31 eV at 90 % CL
 - Shrinking upper limit for negative m_{ν}^{2}
- Bayesian analysis in preparation

Lokhov, Tkachov, Phys. Part. Nucl. 46 (2015) 3, 347-365 Feldman, Cousins, Phys. Rev. D 57 (1998) 3873-3889

KATRIN data taking continues

- 13 measurement campaigns completed this Monday, June 17!
- > 150 Mio counts recorded x4 of this release!
- More data to come in **2024-2025** + calibration/systematics improvements

TRISTAN @ KATRIN

- Search for keV sterile neutrinos
 - Novel SDD array for high rates
- Target sensitivity to mixing of **10**⁻⁶
 - Ongoing systematic and modeling studies
- Timeline
 - 2024 Assembling a full detector replica
 - 2026 Installation in the KATRIN beamline
 - 2026-2027 keV sterile neutrino search

Single module 166 pixels

S. Mertens et al., J. Phys. G46 (2019); S. Mertens et al., J. Phys. G48 (2020); D.Siegmann et al., J. Phys. G (2024)

Posters by D. Siegmann,

A. Onillon

& M. Descher

9 modules

~1500 pixels

MAX PLANCK SEMICONDUCTOR

LABORATORY

erc

Conclusion and Outlook

New KATRIN release improves direct neutrino-mass bound by a factor of 2:

$$m_{\nu} < 0.45 \,\mathrm{eV} \ (90 \,\% \,\mathrm{CL})$$

Ongoing analysis:

- 70 % of total anticipated data recorded, improvements in systematics
- Several BSM physics searches: eV-sterile, exotic $\frac{2}{6}$ interactions, light bosons, relic $v... \Rightarrow$ stay tuned!

Ongoing data taking through $2025 \rightarrow \Sigma$ 1000 days

• target sensitivity below 0.3 eV

Future perspectives

2026-2027: keV sterile neutrino search with TRISTAN@KATRIN

• Preparations for hardware upgrades, analysis is getting ready for the data

2027+: R&D towards the ultimate neutrino mass determination

- Differential methods, atomic tritium, background reduction
- KATRIN++ mission:
 - Identify and develop scalable technology for the next neutrino mass experiments
 - Use **KATRIN infrastructure** for R&D phase (~7 years)
 - We invite the community to join this effort!

KATRIN collaboration

Collaboration meeting, March 2024, TUM

