atus of θ_1 measurements

Zeyuan Yu Institute of High Energy Physics June 17th, 2024

NEUTRINO 2024

0

With inputs from Double/Super Chooz, RENO and Daya Bay collaborations

Reactor neutrinos

The strongest artificial neutrino source on the Earth

2×10²⁰ v's per second per GW thermal power, >99.7% from ^{235,238}U and ^{239,241}Pu

Reactor neutrinos

NEUTRINO 2024 ...

The strongest artificial neutrino source on the Earth

2×10²⁰ v's per second per GW thermal power, >99.7% from ^{235,238}U and ^{239,241}Pu

Easy to detect via the Inverse Beta Decays (IBD)

Reactor neutrinos

V NEUTRINO 2024 ...

The strongest artificial neutrino source on the Earth

2×10²⁰ v's per second per GW thermal power, >99.7% from ^{235,238}U and ^{239,241}Pu

Easy to detect via the Inverse Beta Decays (IBD)

Measure θ_{13} with reactor v's

Disappearance experiments to measure \overline{v}_e survival probabilities

 $P = 1 - \cos^4\theta_{13}\sin^22\theta_{12}\sin^2\Delta_{21} - \sin^22\theta_{13}\left(\cos^2\theta_{12}\sin^2\Delta_{31} + \sin^2\theta_{12}\sin^2\Delta_{32}\right)$

No ambiguity, independent of matter effect and $\delta_{\mbox{\tiny CP}}$

Place two detectors for a relative measurement, <1% systematics

Measure θ_{13} with reactor v's

Disappearance experiments to measure $\overline{\mathbf{v}}_{e}$ survival probabilities $P = 1 - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta_{21} - \sin^{2}2\theta_{13}\left(\cos^{2}\theta_{12}\sin^{2}\Delta_{31} + \sin^{2}\theta_{12}\sin^{2}\Delta_{32}\right)$ No ambiguity, independent of matter effect and δ_{CP}

Three zones, Gd-LS/LS/oil, naturally define the fiducial volume, good shielding

θ_{13} status at Neutrino-2004

Search for θ_{13} with a new reactor experiment is very promising, white paper ready

θ_{13} status at Neutrino-2008

Three experiments, Daya Bay, Double Chooz and RENO started construction

Daya Bay will reach a sensitivity of ≤ 0.01 for sin²2 θ_{13}

- Civil construction has begun
- Subsystem prototypes exist
- Long-lead orders initiated
- Daya Bay is moving forward:
- Surface Assembly Building Summer 2008
- $-\,$ DB Near Hall installation activities begin early in 2009
- Assembly of first AD pair Spring 2009
- Commission Daya Bay Hall by November 2009
- LA Near and Far Hall installation activities begin late in 2009
- Data taking with all eight detectors in three halls by Dec. 2010

Double Chooz Far integration Started in May 08

First goal: measurement of θ_{13}

- 2008-09 → Far Detector construction & integration
- Middle 09 → Start of phase I : Far 1 km detector alone
- $sin^2(2\theta_{13}) < 0.06$ after 1,5 year (90% C.L.) if no-oscillation - 2008-10 \rightarrow Near Lab Escavation & Near Detector Integration
- \rightarrow Start of phase II : Both near and far detectors
 - $\sin^2(2\theta_{13}) < 0.03$ after 3 years (90% C.L.) if no-oscillation

\Box RENO is suitable for measuring θ_{13} (sin²(2 θ_{13}) > 0.02)

□ Geological survey and design of access tunnels & detector cavities are completed. Civil construction will begin in early June, 2008.

RENO is under construction phase.

Data taking is expected to start in early 2010.

Asian Reactor Anti-Neutrino Experiments DAYA BAY and RENO, Christopher White at Nu-2008 Towards θ13: Double Chooz and non-asian efforts, Thierry Lasserre at Nu-2008

2012: $\theta_{13} \neq 0!$ It's relatively large!

V NEUTRINO 2024

Nature is kind to us!

We will be able to know the neutrino mass ordering and δ_{CP} in 2030s

Daya Bay Phys.Rev.Lett. 108 (2012) 171803

2012: $\theta_{13} \neq 0!$ It's relatively large!

Nature is kind to us!

We will be able to know the neutrino mass ordering and δ_{CP} in 2030s

Daya Bay

Phys.Rev.Lett. 108 (2012) 171803

RENO

Phys.Rev.Lett. 108 (2012) 191802

Double Chooz far detector Phys.Rev.Lett. 108 (2012) 131801

2012: $\theta_{13} \neq 0!$ It's relatively large!

NEUTRINO 2024

Nature is kind to us!

We will be able to know the neutrino mass ordering and δ_{CP} in 2030s

Shape distortions consistent with three-flavor oscillation predictions

How to improve θ_{13} precision?

- **1**、 Accumulate statistics → Stable data taking, include nH IBDs
- **2** Improve systematics \rightarrow Detector identicalness, backgrounds
- 3、Rate+shape analysis → Accurate energy response model

Daya Bay talk by Zeyuan Yu at Nu-2016

2.8%@2022^{0.05}

2020

Uncertainty of ∣∆m̃²el[10⁻³eV²]

Total uncertainty

 $\sin^2 2\theta_1$

 Δm_{ee}^2

.9%@2016

2018

2016

Statistical uncertainty only

Three experiments have stopped data taking

Daya BayDec. 2011 to Dec. 2020, 3158 daysDouble ChoozApr. 2011 to Dec. 2017, ~1350 daysRENOAug. 2011 to Mar. 2023, ~3800 days

Data sets

Three experiments have stopped data taking
Backgrounds and systematics well studied
Daya Bay Dec. 2011 to Dec. 2020, 3158 days
Double Chooz Apr. 2011 to Dec. 2017, ~1350 days
RENO Aug. 2011 to Mar. 2023, ~3800 days

Accidentals: measured w/ time off-window Correlated: ⁹Li/⁸He, cosmogenic and radiogenic neutrons, more crucial

Backgrounds - cosmogenic ⁹Li/⁸He

Production yields of ⁹Li/⁸He measured
→ Good power-law versus muon energies
→ However, unknown ⁹Li/⁸He ratio

Several methods for the high-rate lowenergy-deposit muons

- → Muon-Neutron capture-⁹Li/⁸He triple coincidence
- \rightarrow Multiple dimension fitting
- → Reactor-off data (Double Chooz)

Backgrounds - cosmogenic ⁹Li/⁸He

First observation of ⁸He at Daya Bay

using β cascade decays of $^8\text{He}\text{-}^8\text{Li}^{g.s.}$

→ The smallest production yield isotope in LS

 \rightarrow Valuable inputs for future experiments

Daya Bay arXiv: 2402.05383, accepted as PRD Letter

Poster from Chengzhuo Yuan (Daya Bay), ID-488

⁹Li ⁸He Experiment

RENO Daya Bay

Double Chooz

KamLAND Borexino

 cm^{2}

۵O

ò

2024

results

Backgrounds – radiogenic neutrons

Neutrons from (α ,n) reactions and spontaneous fissions

- → Gd-LS, LS and acrylic: clean, ²³⁸U and ²³²Th < 0.1 ppb, 1.1% ¹³C, *O*(0.05) n's/day
- \rightarrow PMT glass: O(100) ppb ²³⁸U/²³²Th and 20% boron, O(100) n's/day/100kg glass

→ Negligible for nGd but not for nH if PMTs not well shielded from LS

- ightarrow Five Daya Bay PMTs were broken to measure the Boron fraction in glass
- ightarrow Also investigated the material screening results, no other non-negligible neutron source

Distance from PMT to LS		Residual bkg in nH
Daya Bay	20 cm	0.2/day/AD
RENO	~50 cm	<10 ⁻⁴ /day
Double Chooz	~45 cm	<10 ⁻⁴ /day
¹¹ B(α , n) ¹⁴ N prompt ¹⁹ F(α , n) ²² Na recoil proton delayed ¹⁴ N (²² Na) p delayed ¹¹ B (¹⁹ F) p delayed ¹¹ B (¹⁹ F) n delayed ¹² C Gd γ (2.2 MeV) ¹² C Gd γ (8 MeV) prompt delayed		

Multiple detectors at the same site at Daya Bay enables side-by-side comparison

→ Confirms that systematic errors are under control

IBD measurement agrees with prediction well 1.03 AD3 AD4 AD1 AD5 AD6 AD4 AD5 AD6 AD7 AD2 AD8 $\overline{\langle EH3 \rangle}$ (EH3) (EH3) (EH3) (EH3) (EH3) (EH3) 1.02 -Rates 1.01 5º 1.00 Ratio of 60.1 Observed Ratio Expected Ratio 0.98 EH2 EH3 EH3 EH1 6AD+8AD 8AD+7AD 6AD 8AD+7AD

Relative differences on energy scales (<0.2%) and Gd capture fractions (<0.1%)

Detector energy response

Nonlinear energy response due to quenching and Cherenkov effects

Three experiments obtained 0.5% precision using multiple γ's and ¹²B spectrum

Refer to the ESCAPE before Nu-2018 focused on the calibration strategies in antineutrino experiments

- \rightarrow More than 10 experiments shared calibration details, better understandings with each other
- → https://www.mpi-hd.mpg.de/escape2018/

Plots from Kam-Biu Luk's Daya Bay talk at Nu-2022, also refer to Nucl.Instrum.Meth.A 940 (2019) 230-242 and 895 (2018) 48-55

Latest oscillation results

θ_{13} with nGd -- Daya Bay

Daya Bay reported the precision measurement with 3158-days full dataset in 2022

 $\sin^2 2\theta_{13} = 0.0851 \pm 0.0024$

precision 2.8%

 $\Delta m_{32}^2 = 2.466 \pm 0.060 (-2.571 \pm 0.060) \times 10^{-3} eV^2$ precision 2.4%

Systematics, mainly detector differences, contributed about 50% in the total error

θ_{13} with nGd -- RENO

V NEUTRINO 2024 ; • • •

New results

- 1,211,995(144,667) $\overline{\nu}_e$ candidate events obtained for near(far) in 3800 days
- Data driven background estimate
 - 9.08±0.18 (2.06±0.13) events per day
 - 2.5%(5.3%) of IBD signals
- Compare with a reactor model prediction w/ oscillation confirms the 5-MeV bump

Detector	Near	Far
IBD rate	366.47 ± 0.33	38.70 ± 0.10
after background subtraction	357.39 ± 0.38	36.64 ± 0.16
total background rate	9.08 ± 0.18	2.06 ± 0.13
live time [days]	3307.25	3737.85
accidental rate	2.30 ± 0.02	0.36 ± 0.01
fast neutron rate	1.74 ± 0.01	0.34 ± 0.01
²⁵² Cf contamination rate	0.07 ± 0.01	0.34 ± 0.04
⁹ Li/ ⁸ He rate	4.97 ± 0.17	1.02 ± 0.12

θ_{13} with nGd -- RENO

- Based on the measured far-to-near ratio of IBD rates and prompt spectra
 - $-\sin^2 2\theta_{13} = 0.0920 + 0.0044 0.0044 (stat.) + 0.0041 0.0041 (syst.)$ precision 6.5% precision 4.6%
 - $-\Delta m_{ee}^2 = 2.57 + 0.10_{-0.11} (stat.) + 0.05_{-0.05} (syst.) [\times 10^{-3} eV^2]$
- (reference) 2200[d] result published at 2018
 - $-\sin^2 2\theta_{13} = 0.0896 \pm 0.0048(stat.) \pm 0.0047(syst.)$ $-\Delta m_{ee}^2 = 2.68 \pm 0.12(stat.) \pm 0.07(syst.) [\times 10^{-3} eV^2]$

precision 7.5% precision 5.2%

V NEUTRINO 2024

θ_{13} with nH -- Daya Bay

- A new θ_{13} measurement with 1958-days data
- → Two independent analyses
- → Crosschecks on backgrounds, systematics, and fitting codes
- \rightarrow Identification of radiogenic background
- \rightarrow Development of energy response matrix
- → Previous publication used 621-days data and rate-only analysis Phys.Rev.D 93 (2016) 7, 072011

	Uncertainty (%)	
	Analysis A	Analysis B
Target protons	0.11	0.11
Prompt energy	0.13	0.13
$[1, 1500] \mu s$	0.10	0.10
Delayed energy	0.20	0.24
Coincidence DT	0.20	0.21
Combined (ε)	0.34	0.37

θ_{13} with nH -- Daya Bay

Consistent with nGd results within 2σ

 $\sin^2 2\theta_{13} = 0.0759 \pm 0.005$

precision 6.5%

$\Delta m_{32}^2 = 2.72 \pm 0.15 (-2.83 \pm 0.15) \times 10^{-3} eV^2$ precision 5.3%

Statistics contribute 47% and 64% to the errors of $sin^2 2\theta_{13}$ and Δm^2_{32} , respectively

New results

θ_{13} with nH -- RENO

Using nH data set of about 2800 days

 $\sin^2 2\theta_{13} = 0.082 \pm 0.007 (\text{stat.}) \pm 0.011 (\text{syst.})$

precision 15.9%

[reference] JHEP (2019) 1500 days of nH: $sin^2 2\theta_{13} = 0.086 \pm 0.008(stat.) \pm 0.014(syst.)$ precision 18.7%

	Near	Far
DAQ live time (days)	2259.298	2653.297
IBD candidates & backgrounds rate	$\textbf{316.67} \pm \textbf{0.37}$	$\boldsymbol{61.10\pm0.15}$
After background subtraction	$\textbf{298.60} \pm \textbf{0.62}$	$\textbf{35.67} \pm \textbf{0.28}$
Total background rate	$\textbf{18.06} \pm \textbf{0.50}$	$\textbf{25.43} \pm \textbf{0.24}$

This shows the possibility of Δm_{ee}^2 measurement in nH analysis.

2024

θ_{13} with all captures - Double Chooz

Double Chooz preliminary results with full data set, presented at Nu-2020

Using ANN to suppress accidental background

Total neutron capture enhanced the detection efficiency for n-Gd

Plan to finalize by end of 2024

$\sin^2 2\theta_{13} = 0.102 \pm 0.004 (\text{stat.}) \pm 0.004 (\text{stat.})$	0.011(syst.)
---	--------------

 $\times 10^3$ ND Data 🔶 FD Data FD / ND Data 30 No-oscillatted MC No-oscillatted MC 10000 No oscillation Accidentals Accidentals 1.2 Best fit on $\sin^2 2\theta_{12} = 0.102 \pm 0.012$ 25 ⁹l i Events / 0.25 MeV ∆⁸⁰⁰⁰ Total Systematics Fast Neutrons Fast Neutrons Far / Near 1 20 25 6000 **Double Chooz Preliminary Double Chooz Preliminary** Near (587 live-days) 15 Events 1.0 Far (1276 live-days) 4000 10 125k IBDs 412k IBDs 0.9 S/B>12 Double Chooz Preliminary S / B > 28 2000 Far (1276 days) + Near (587 days) [1,8.5] MeV [1,8.5] MeV 0.8 2 6 0 10 15 15 Visible Energy (MeV) 5 5 10 20 20 Visible Energy (MeV) Visible Energy (MeV)

Plots from Thiago Bezerra's Double Chooz talk at Nu-2020

precision 11.8%

Global comparison θ_{13}

V NEUTRINO 2024 ...

Daya Bay leads the precision measurement, nGd+nH gives 2.6% precision By combining all reactor results, ultimate precision of $sin^2 2\theta_{13}$: 2.5% Consistent results from reactor and accelerator experiments

Note: average is error weighted average assuming no correlation

Global comparison Δm^2

Consistent results from reactor and accelerator experiments

Reactor weighted average 2% dominated by Daya Bay

Accelerator weighted average 1.5% (SK+T2K) + NOvA + MINOS + IceCube

Global comparison Δm^2

Consistent results from reactor and accelerator experiments

Normal Ordering slightly preferred (<20) from reactor/accelerator averages

1% precision $sin^2 2\theta_{13}$?

In future, if unitarity test of PMNS matrix is limited by θ_{13} , two ways to improve

- **1. Shape distortion 1kt LS** detector at 2.0km baseline
- 2. Rate deficit 10kt LiquidO detector at 1.1km baseline

Requires 1% shape uncertainty and 0.5% energy scale Fulfilled by inputs of TAO and intensive calibration JHEP, 2023, 03: 072

Super Chooz: LiquidO to suppress bkgs. https://zenodo.org/doi/10.5281/zenodo.7504161 Poster from Raphaël Gazzini, ID-635

Super Chooz setup

Under ongoing experimental demonstration & exploration via the CLOUD experiment

SuperChooz experimental setup...

·Baseline: ~1 km

x [cm]

(a)

Summary

1. Daya Bay, RENO, and Double Chooz all stopped data taking

- \rightarrow Well controlled systematics (< 0.2%), in total more than 1 million IBDs at far sites
- \rightarrow Almost equal contributions from systematics and statistics in oscillation parameters
- ightarrow Side-by-side comparison at Daya Bay verified the systematics control

2. Daya Bay leads the precision measurement of $\sin^2 2\theta_{13}$ and $|\Delta m^2_{32}|$ in reactor side

- 2.1 Reactor experiments average: $\sin^2 2\theta_{13} = 0.0839 \pm 0.0021$, 2.5% precision
- \rightarrow The most precisely measured mixing angle up to Nu-2024

2.2 Reactor experiments average: Δm_{32}^2 =(2.51[-2.61] \pm 0.05)*10⁻³ eV² , 2% precision

 \rightarrow Slightly prefer normal mass ordering by comparing with accelerator results

3. Working on final results

ightarrow Full nH data set in Daya Bay and RENO, final results from Double Chooz

4. <1% precision of $sin^2 2\theta_{13}$ achievable using either shape distortion or rate deficit

Posters

Daya Bay,

- 1、Daya Bay oscillation results with neutron capture by hydrogen, Zhiyuan Chen, ID-321
- 2、Reactor neutrino flux and spectrum measurements with Daya Bay full data set, Yang Han, ID-236
- 3、Neutron Capture Cross Section Measurement on Carbon, Yuchin Cheng *et al*, ID-486
- 4、Seasonal Variation of Muon Rates Using Full Dataset, Bangzheng Ma, ID-291
- 5、First measurement of the yield of ⁸He isotopes produced in LS, Chengzhuo Yuan, ID-488

Super Chooz,

1、The SuperChooz project: a LiquidO-based neutrino oscillation experiment, Raphaël Gazzini, ID-635

Experiment	Reference
Daya Bay nGd	Phys. Rev. Lett. 130, 161802 (2023)
Daya Bay nH	arXiv:2406.01007
RENO nGd	Provided by RENO for this talk
RENO nH	Provided by RENO for this talk
Double Chooz	Neutrino 2020 talk
T2K	Eur. Phys. J. C 83, 782 (2023)
NOvA	Phys. Rev. D 106, 032004 (2022) arXiv:2311.07835
T2K + NOvA	Reports (2024) found at https://indico.fnal.gov/event/62062/ https://kds.kek.jp/event/49811/
MINOS	Phys. Rev. Lett. 125, 131802 (2020)
Super-K	Phys. Rev. D 109, 072014 (2024)
Super-K + T2K	arXiv:2405.12488
IceCube	Phys. Rev. D 108, 012014 (2023)

Measured prompt energy spectra at Daya Bay

RENO

- Reactor Experiment for Neutrino Oscillation
- The RENO experiment has precisely measured the amplitude and frequency of reactor antineutrino oscillation at <u>Hanbit</u> Nuclear Power Plant.
- Data taking : Aug. 2011 ~ Mar. 2023 (corresponding to ~3800[d] live time)

period	live time	result
Aug. 2011 ~ Feb. 2018	2200 [days]	2018 PRL
Aug. 2011 ~ Mar. 2023	3800 [days]	new

IBD Candidate Sample & Background Estimation (n-Gd)

- By applying selection criteria, 1,211,995(144,667) v
 _e candidate events were obtained for near(far).
- The remaining background rates and spectral shapes are obtained from control data samples.
- The total background rates are estimated to be 9.08±0.18(2.06±0.13) events per day for near(far) detectors, which corresponds to 2.5%(5.3%) of the total background fraction.

measured IBD and estimated background rates with $1.2 \le E_p \le 8.0$ [MeV], given per day

IBD Spectrum (n-Gd)

- A shape comparison between the observed IBD prompt spectrum and the prediction from a reactor \bar{v}_e model.
 - observed IBD prompt spectrum from data after background subtraction
 - prediction from MC w/ the best-fit oscillation
- The fractional difference b/w data and prediction is also shown in the lower panel.
- A clear discrepancy b/w the observed and the predicted spectral shapes is found in the region of 5 [MeV] in both detectors.

Oscillation Measurement (n-Gd)

 Based on the measured far-to-near ratio of prompt spectra from the 3800[d] sample, we obtain the following final result.

preparing

- $-\sin^{2}2\theta_{13} = 0.0920 + 0.0044 (stat.) + 0.0041 (syst.)$
- $-\Delta m_{ee}^2 = 2.57 + 0.10 + 0.05 +$
- (reference) 2200[d] result published at 2018
 - $-\sin^2 2\theta_{13} = 0.0896 \pm 0.0048(stat.) \pm 0.0047(syst.)$
 - $-\Delta m_{ee}^2 = 2.68 \pm 0.12(stat.) \pm 0.07(syst.) [\times 10^{-3} eV^2]$

θ_{13} Measurement (n-H)

$sin^2(2\theta_{13}) = 0.082 \pm 0.007(stat.) \pm 0.011(syst.)$

JHEP(2019) : 1500days n-H result $\rightarrow \sin^2(2\theta_{13}) = 0.086 \pm 0.008(\text{stat.}) \pm 0.014(\text{syst.})$ PRL(2018) : 2200days n-Gd result $\rightarrow \sin^2(2\theta_{13}) = 0.0896 \pm 0.0048(\text{stat.}) \pm 0.0047(\text{syst.})$

Total background 22.8 0 Combined result Error weighted mean (nGd+nH) (No correlated) \rightarrow 0.0871 ± 0.0064(tot.)

(apply correlation) →0.0871 ± 0.0040(stat.) ± 0.0045(syst.) . [± 0.0060(tot.)]

This shows the possibility of Δm_{ee}^2 measurement in nH analysis.

nGd(2200d) + nH(2800d) combined result

