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Future... Difficult? \(

Talks covering “Current” or “Recent”
or even “Past” results cover a finite
Iinterval, since there is always a
natural start time.

OKAY, WE GOT THE
LABCOATS.
NOW WE NEED A GOOD EXCUSE
To WEAR THEM %
. ™ > f”_\ ‘,!A

» Several of your
speakers, including me,
have been tasked with
predicting the future.
This comes with several

o

difficulties. ' \ an 172“
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Future... Difficult? \(

» Several of your By contrast, “future” is a semi-infinite
SpeakerS, induding me, time interval. SO, in a 25 minute talk,
have been tasked with time management is a challenge.

predicting the future.
This comes with several

|

Chair Tackles Speaker

difficulties. Chair Glares at Speakert
Chair Looks at Watch} — Optimal Mapping
PAST || NOW | FUTLRE
——__:_.____*_J Finish Introduction

i .
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Now  Now+10yr Now+20yr
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Future... Difficult?

* Several of your It’s also been said many times, and
speakers, including me, credited to many individuals, that,
have been tasked with “it js difficult to make predictions,
predicting the future. especially about the future.”

This comes with several
difficulties.
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Det er vanskeligt at épaa, isaer
naar det geelder Fremtiden.
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Future... Easy? \'\2{

Since the task itself it impossible by
construction, | can talk about anything |
choose, constrained only by my need
to keep you coming back for more.

» Several of your
speakers, including me,
have been tasked with
predicting the future.
This comes with one
great opportunity.
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Today’s Plan

* Trends in technology
» Beams, locations, detectors
* Emerging scientific opportunities
* Energy dependence
* Flavor dependence

* Neutrons
Some day soon, you will meet a dark and intense beam.
I Your detectors will grow and become ever more convoluted.
|
NUCIGO”S and nUC|e| Your detectors will be in strange locations relative to the beam.
' : ' Some of them will move, sloshing liquids as they slowly travel.
» Revisionist History ] i

Some cost less because they are a byproduct of freezing ground beef.
o B t Some will be made of materials you abandoned long ago, but | see
anq ue worries of a fireball and hear someone sobbing, “oh the humanity”.
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Neutrino Beams

(it all begins here)
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Neutrino Beams: Intensity

We have two ~GeV neutrino beams approaching 1MW beam
power, both with incremental paths to slowly increasing power.

The NuMI neutrino| beam
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Approaching megawatt beam!
* Typically ~900 kW  + Record 959 kW

71 . Daily neutrino beam —— Accumulated beam  —— Accumulated neutrino beam 600 2014'2023:
. « Daily antineutrino beam Accumulated antineutrino beam 5
=6
0;2 2024 analysis dataset NEW NOVA'Only 50§ 10 years Of beam
%5 207 to NOvA!
= o
. Joint NOVA+ T2K ¢ 43
a 2020 analysis data O|n VA + o 308 . o
2 s : dsf g‘ g ;g T This analysis:
>2 . B B 48 +96% neutrino
T S A e O g o 28
0, ﬁé:. £ P H Pooaled f" '. ol 10§ beam
- w P E 3 o 2
o I e i, V: 26.61X10% POT
2015 2016 2017 2018 zolljgte 2020 2021 2022 2023 2024 GZ 12.50%10%° POT
20 June 2024

J-PARC

accelerator, .

T2K beamline

NLdl dLILCIOIS

L
Muon | VLl lNéﬁfl*

Far detector
(Super-K)
]

Du ay \olunn monitor,

.
280m

Giganti,
T2K

295km
,\é 15 ol R Run  Rund RS Runé  Run7 Run$  Rund R0 Run12 Runl3 1900 E
% 40 — 800 :‘3/
S 35 —700 g
% 30 —600 D;
% 25 —1500 g
E 20 —1400 =
; § 15 7300
Z 10 = 200
5 — 100
mmy RN I D L1 MR B L
020 10201 1‘20 12201 3120 14201 5|20 16201 7‘20 18201 9‘2020 202120222023 2024202)5

Kevin McFarland: Interactions Future

Year



Neutrino Beams: Intensity
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Neutrino Beams: Intensity

* And there may be plausible, and complementary, ways to
reach higher power at lower energies with spallation sources.
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Neutrino Beams: Flavor

Hg target for neutron
and neutrino sources

Our conventional beams are muon
neutrinos. But...

...can produce electron neutrinos through

3GeV pulsed
proton beam
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Location

(location, location...)

Kevin McFarland: Interactions Future
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Location... for energy
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Location... for energy
« T2K and MINERVA have both produced first results

exploiting this to measure energy dependence.

» T2K by using different detectors in different locations.
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Location... for energy

T2K and MINERVA have both produced first results
exploiting this to measure energy dependence.
= MINERVA with differently tuned beams on the same detector!
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Location... for flavor

* MicroBooNE uses the NuMI beam far off-axis, Caratelli
where there are enhanced contributions from e
Absorber

kaon decays, and therefore a larger v, fraction.
* MicroBooNE and SBN (ICARUS) plan to exploit

nBooN
this for oscillation and interaction studies. _p
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Intensity and Location commentary \Q{

* Neutrino beams continue to grow in intensity, increasing statistics

for neutrino interaction measurements, and allowing smaller
target/detectors.

« Off-axis beams, to tune neutrino energy and flavor, are a luxury of
the very intense beams that we are producing at accelerators.

« Today we are seeing early results from experiments.

« But I'll predict that this technique will become increasingly critical
In our control of flavor and energy dependence of neutrino
iInteractions for oscillation experiments.

= More on this later.

20 June 2024 Kevin McFarland: Interactions Future 17



20 June 2024

Detectors

(like the Duomo di Milano, detectors are
designed by committees, parts are
outsourced, and they take time to build)

Kevin McFarland: Interactions Future
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SBN Program Near Detector (SBND) \i\{

« SBND utilizes liquid argon TPC (LArTPC) technology because of
its low particle thresholds and good particle identification.

* Close to the beam source and massive, it will accumulate NOVA
near detector or MINERVA sized statistics on an argon target.

SBND Neutrino Flux at TPC Front Face

=
o
4

v, CC Res.
m 0.966 GeV

[y
o
©

P, 1.121 GeV
p,  1.048 GeV

SBND Simulation

._.
<
L

————————————
~r
T

llllll

¢ /10° POT / m? / 50 MeV
=
o
|

_______
Led 1y Sl e

]
10*3.

figures courtesy HRp
ViShvaS Pandey Y 0.5 1.0 15 2.0 2.5 3.0

Neutrino Energy [GeV]

20 June 2024

Kevin McFarland: Interactions Future 19



T2K/HyperKamiokande SuperFGD

* The SuperFGD 3D pixelated scintillator also provides increased
granularity for high multiplicity and low thresholds.

* Also has excellent neutron capability, including time-of-flight
momentum reconstruction.

UAI MognetYoke
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] |
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. / |
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,,\.0
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DUNE Phase One Near Detector

* |ncludes PRISM concept in novel
segmented LArTPC, which is currently
being prototyped. P

VI Cmo]
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DUNE Phase One Near Detector

 SAND includes CH, and C (for separation of H and C)
and Ar targets to compare interactions on different nuclei.
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DUNE Phase TWO Gaseous “more capable” ND

A future gaseous argon detector would provide bubble-chamber
like low thresholds for reconstruction of charged particles.

« Valuable information about energy lost to nuclear final states.

/proton
p=1.2 GeV/c
/ |

UTC Wed Jyn 17,1981 |
-40:26.238719056
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Detector commentary \i\{

* The intensity allowing for smaller mass detectors also opens up a
wide variety of increased capabilities.

» Only some of which I've highlighted here today!

 We have also, as a field, benefitted from learning what worked
and what didn’t in past experiments.

» Detectors come with long lead times, so it's easy to predict we will
see increased capability for neutrons, multiple target nuclei, lower
thresholds and better particle identification. All of these will break
new ground in understanding of interactions.

= More on that later.

20 June 2024 Kevin McFarland: Interactions Future 24
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Neutrino Energy

(it’s what oscillation
experiments need to
measure)

Kevin McFarland: Interactions Future
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DUNE and HyperKamiokande PRISM v,

Luke Pickering

 DUNE and HyperKamiokande both intend to have & W"\ 0

movable detectors for the PRISM technique. ;ML
= While framed as a tool directly applied to oscillations, %/
this probes neutrino energy dependence of interactions. ¢
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SBND “Mini” mywore) PRISM

* |n the near future, SBND will be able to do this within their detector.

= Enabled by high statistics, and proximity to a low energy beam.

= Will be limited by access to low energies far off axis, but it should work well
from 0.7 to 1.5 GeV in neutrino energy.
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Energy commentary \i\{

* ltis a limitation of our wideband beams that we have had very few
tools to cleanly probe neutrino energy dependence of interactions.

« That is problematic when neutrino oscillations requires
measurement of neutrino energy and flavor.

= Current experiments probe this effect indirectly and minimize its impact
with narrow band beams and near to far detector comparisons.

* Direct capability to probe energy dependence of a wide variety of
interactions is novel and, | predict, a critical capability of our next

generation of experiments

20 June 2024 Kevin McFarland: Interactions Future 28
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Neutrino Flavor

(in American English,

6, 0 7

there is no “u” in “flavor’)

Kevin McFarland: Interactions Future
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The v, Problem

* By necessity, our v, rich beams have few v, in them to allow us
to study any difference between v, and v, interactions.

* Therefore, we infer v, interactions from studies of v,

* But what we study can’t give us the whole picture.
* Phase space (below), radiative corrections, nuclear effects.
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O. Tomalak et al.,
Nature Commun. 13 (2022) 1, 5286
and Phys.Rev.D 106 (2022) 9, 093006

Nuclear effects:
T. Dieminger et al.,
Phys.Rev.D 108 (2023) L031301
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MINERVA: Electron Neutrino Flux

/ Muon Monitors
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Decay Pipe
S 5
arg
’/ e l
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10 m 30 m R " Hadron L Rock 12 m
\_ = Monitor
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NuMI is a “conventional”

neutrino beam, with most
neutrinos produced from

focused pions.

Pions decay mostly to muons,
but weak decays involving
electrons come from daughter
muons or kaons.

~1% contribution of the beam.
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MINERVA v, /v, Ratios
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Preliminary.

Cross- sections N
panels of p% as a
functlon of avallable
energy”, energy in
calorlmetrlcally visible
particles, e.g., not
neutrons.

Simulation predicts a
ratio very close to one
dominated by statistical
uncertainties.

Testing the confidence
of generators ©.
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Flavor (or color?) commentary \Q{

I've given one (MINERVA) example, but T2K, MicroBooNE, and
NOVA (in order of increasing statistics) are active early explorers.

The MINERVA inclusive measurement has ~10% uncertainties in
many bins across a wide range of recoil and transverse momenta,
with systematic uncertainties ~few% in the high statistics bins.

* WWe need to do better than that by factors of two or three in
order to interpret oscillation experiments with experimental

confirmation of flavor dependence of cross-sections.

* Very high statistics of future beams, supplemented by far off-axis
samples from SBN (ICARUS) and MicroBooNE, should allow this.
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20 June 2024

Neutrons

(we’ve made friends with
light neutral long-lived

particles, so maybe we
should try these too)

Kevin McFarland: Interactions Future

34



Neutron reconstruction

« MINERVA has, and SuperFGD will reconstruct neutrons through
their quasielastic knockout of protons from nuclei, e.g., 12C(n np)”B

= SuperFGD has lower threshold »*fzz fim
three-dimensional reconstruction - ~50% tagging e
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Neutron commentary \i\{

* | can confidently predict that neutron measurement techniques
developed in recent years, through detector and analysis
technologies, will have multiple impacts.

= | emphasized isolation of hydrogen on v,p — u™n.

= But this also has applications for understanding of energy lost
to nuclei in interactions because of very low detection
thresholds, neutrino and antineutrino separation, etc.

 Efficiency of reconstruction is low and requires capable detectors;
thus high power neutrino beams are another enabling technology.
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Nucleons and Nuclei

(hydrogen is the most
special of the nuclei?)

Kevin McFarland: Interactions Future
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Is a nucleus a nucleus a nucleus?

« Details of nuclei, such as energies and momenta of individual
nucleons within the nucleus, vary.

« But we are beginning to see some consistencies in how models
describe different nuclei equally well (or equally poorly).

Considering also CCOx channel, seems to point on a

Icorrection to o,

10

Ratio to Scintillator

e cwawnun o This result, transverse momentum — § | ——
2. dependence of pion production on £ "f -

q CCCCC M B A & different nuclei, shows how different % v —
Fe =T |22 final state interaction models give % o
o { I ¢ different overall rates. P
| p—— I — But a second conclusion is that all 4__._\__.__._

| | | ﬂ | |2 nuclei exhibit the same unexpected | R e
E:f% =~ . -—~——i; transverse momentum dependence. | I
| AT Eat I L Buizza Avanzini, o ° '
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Nucleons vs Nuclei

* By contrast, we are struggling to understand cross-sections on free
nucleons as a base for calculating cross-sections on nucleons.

 In F,(Q%), there are significant Qmin = 0.20 GeV?

1.6

tensions between the deuterium 14 Aaron Meyer. Hydrogen

-------- Deuterium Q2. = 0.20 GeV?

bubble chamber legacy data, and 120 NUINT 2024 s Alllsotope G4, = 020 CeV?

1.0{ 1N various [LQCD)]

either the MINERVA hydrogen or <oy NS — Deuterium [Phys.Rev.D 93 (2016)
lattice QCD calculations. R N S —
- Why? It’'s possible that nuclear ol — T
model assumptions in the analysis " o o L B s o
2 eV

of the deuterium data played a role. Cledn o dedn e

x%/DoFp | 94.9/94 0.45 167.7/96 8.3x1076
x%/DoFy | 23.3/15 0.08  10.0/13 0.69
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DUNE-ND “Solid Hydrogen”

* Recall that the DUNE SAND near
detector includes CH, and C folls
interspersed with low density tracker.

* This adds a third handle to direction
and energy constraints, for separating
hydrogen interactions by subtraction.

 Significant potential to dramatically
reduce backgrounds and systematics in
a high statistics measurement.

» Caveat: the estimate at right isn’t a projection from DUNE
(third-party authors), and IMHO it uses a deeply flawed
metric. (But “it’s got a beat, and you can dance to it.”)

20 June 2024 Kevin McFarland: Interactions Future
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Nucleon and Nuclei commentary \Q{

« We've made progress in our nuclear models, informed by electron
scattering, theory, and data from neutrinos and hadron scattering.

« While there is growing evidence that these models
Qrcersianing

may be helping us to understand nuclear effects,
there is also growing evidence that the input of v
free nucleon predictions is not serving us well.

| predict that experiments that can measure or

theory that can calculate free-nucleon interactions,
will become increasingly important.

= Critical to carry out DUNE ND CH,-C plan, and to
supplement it with other ideas like modular hydrogen and deuterium
bubble chambers now under development.
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Revisionist History

(because sometimes we don'’t
get it right on the first try. as in
the deuterium story, perhaps...)

Kevin McFarland: Interactions Future
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Revisionist History

* |n the past, our field has found value in

reanalyzing old data sets. The deuterium THE
bubble chamber data is an excellent example. EVER-CHANGING

* As | postulated, some of that data seems to be PA g l
inconsistent with modern hydrogen data. .
WHY ALL

 Wouldn't it be great to go back and reanalyze it HISTORY'IS
REVISIONIST

with different techniques to investigate why? HISTORY

James M.
Banner, Jr.
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Data Preservation

- MINERVA has embarked on a project to preserve
its data to give the ability to address “late breaking” questions
from its own results or driven by outside work. For example...
= Would any of MINERVA's precision quasielastic-like cross-sections be
altered if measured with an alternate reference model?
= There are many A(v,, 1" p ...)A" kinematic imbalance results. Is it the
same ina A(ve,e p...)A" sample?
* Are there more fruitful comparisons of MINERVA's two (LE and ME, 3 and
6 GeV, respectively) beams to get at energy dependence?

= Are there hints of non-standard interactions that would be revealed if we
looked at other variables, like time relative to beam RF structure or
energy, in some of our rare event topologies?
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Data Preservation (cont’d)

 In brief, it is a set of tuples of the results of our standard
reconstructions for every event, and a set of macros to allow
an analyzer to efficiently interpret that data, focused on the
measurement of a cross-section, but not limited to that goal.

Tuples with Interpretation
reconstructed Macros:

objects « background

- Data, ME and LE Event Loop subtraction from
’ sidebands

in ME beam and ~10x * unfoldingand
efficiency correction

or LE beam
» flux and target
counting

« Simulation, ~4x data Macros
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Data Preservation (cont’d)

 What is in the reconstruction?

 All macros and analysis tools Primary Lepton:
. ] either muon or
are public, and data will be electron

shortly.
- . S d track
. Documentation with et

analysis examples.

 May serve as a Particle ID
useful starting point
for more experiments

S?:,Cr? or](gﬁry Neu_tron Calori_metri_c Total

B Candidates Recoil Estimates
Neutral Pion Varlag;ssgxmcéuswe
Reconstruction secondary tracks

. Global Track
to do something Vertex

similar.
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Closing Thoughts
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Conclusions

The future is still the subject of the most difficult predictions.

* Nevertheless, we can predict that a confluence of beam and
detector capabilities will enable high impact and novel
measurements as new facilities begin to acquire data.

» |'ve given some of my favorite examples. That may
have been exhausting, but it was far from exhaustiver. “

These measurements will complement developments in theory
that will support reduced uncertainties for precision oscillation
measurements, and they will allow our new facilities to realize

the Ir fu ” pOte ntlal g TApologies for the subtle wordplay. An explanation is in the
backup if you don’t know the difference between these two words.
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Thanks fto... \'{{

* |I'm grateful to the many individuals who, knowingly or
unknowingly, provided materials and suggestions for this talk.

Luis Alvarez-Ruso, Margherita Buizza Avanzini, Anatael Cabrera, David
Caratelli, Stephen Dolan, Daniele Gibin, Claudio Giganti, Deborah Harris, Chris
Marshall, Eric Marzec, Aaron Meyer, Laura Munteanu, Shigetaka Moriyama,
Vishvas Pandy, Greg Pawloski, Luke Pickering, Josh Spitz, Tamer Tolba,
Sasha Tomalak, Jeremy Wolcott
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Backup
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Axial Form Factor
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More on the Deuterium Data...

« The deuterium bubble chamber data gives self-inconsistent fits for
F,(0%), unless overregularized to force sensible results, like a
reasonable value for the axial radius (slope at Q% = 0).

= Below is the effect of choices of how low in Q* to fit the data.
Q2,, = 0.06 GeV? Q2. =0.20 GeV?

167 — 1.6
il Hydrogen i ‘ Hydrogen

' E . U Deuterium Q. = 0.06 GeV? B Deuterium Q2. = 0.20 GeV?
12\ k o 1.2 \ s All-Isotope Q2. = 0.20 GeV?

1.0{ O 1.0{ B

S0 A 08| W
ol A . Ezzziigbgw_nxgaxn

04 TN 04

0.2/ N 0.2

0.0 0.0 e —
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Aaron Meyer,
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A Subtle Piece of the English Language

20 June 2024 Kevin McFarland: Interactions Future 54



“Exhausting” and “Exhaustive” \i\{

Exhausting (adjective): making one feel very tired; very tiring.
example use: "a long and exhausting journey"

Exhaustive (adjective): examining, including, or considering all
elements or aspects; fully comprehensive.

example use: "she has undergone exhaustive tests since
becoming ill”
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MINERVA Electrons
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Electron/Photon in ve~ — ve™

« Background from production neutral pions is manageable with
dE/dx, even with an electron energy threshold of 800 MeV.
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Fractional Uncertainty

MINERVA: Uncertainties on v, /v,
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These are preliminary,
and so far only for
neutrinos.

Systematic
uncertainties are
~subdominant, at
least in any given bin.

Detector model (muon
energy scale)
becomes significant.
But flux and
Interaction models are
small uncertainties.
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