Future^{*} detectors for atmospheric neutrinos

Jürgen Brunner Centre de Physique des Particul⁺ de Marseille

* This decade

XXXI International Conference on Neutrino Physics and Astrophysics June 16-22, 2024 Milan, Italy

V,

Ve

- Rich phenomenology in the 1-100 GeV energy range
- Baselines between 500 km and 13000 km

Matter resonance 4-10 GeV
→ neutrino mass ordering

• v_{μ} disappearance 10-40 GeV \rightarrow precision measurements Δm_{31}^2 , θ_{23}

• v_{τ} appearance 10-40 GeV $\rightarrow v_{\tau}$ cross section, v_{τ} sector BSM tests

Next generation detectors

Detectors - IceCube / DeepCore

- 86 strings with 60 DOMs instrumenting 1km³
- Deep Core : dense core for atmospheric neutrino physics at 10-100 GeV
- Operational since 2011

Detectors - IceCube upgrade

- 7 new strings inside DeepCore region
- 20m string spacing, 3m module spacing
- Energy threshold lowered from ~10 GeV to ~2 GeV
- Several Mtons instrumented volume
- Installation during 2025/2026 campaign

Detectors - HyperKamiokande

- 258 kton of water
- Fiducial volume ~0.2 Mton
- 20,000 50cm PMTs
- Data taking start planned for 2027

Detectors - KM3NeT/ORCA

Detectors - Multi-PMTs

- Design developed by KM3NeT
- Applied now in all next-generation detectors
- Photon counting, nsec coincidences, directionality
- Better calibrations

KM3NeT

IC upgrade

Hyperkamiokande

Detectors - Status of KM3NeT/ORCA

- 23 DUs installed on sea floor
- 20% of final detector

Detectors - KM3NeT/ORCA construction

- Data taking and current analyses
- 433 and 715 kt-yr results
- 1.6 Mt-yr on tape

- Construction schedule
- Data sample equivalent of 3 years full ORCA before end of decade

Event sample - KM3NeT/ORCA

- Extrapolation from current analysis 0.7 Mt-yr
- 3 particle ID classes

- full ORCA (7 Mt-yr) : 90,000 neutrinos per year
- 2 GeV few TeV

Event sample - IC upgrade

- $3mHz \rightarrow 90,000$ neutrinos per year
- 2-100 GeV

Event sample - Hyperkamiokande

- Extrapolation from Superkamiokande
- 80 events per days \rightarrow 30,000 neutrinos per year
- Dominantly fully contained (FC) events 0.2-20 GeV

Detector response - energy resolution

- KM3NeT/ORCA
- At 10 GeV 25% for ν_e and 35% for ν_μ
- IC upgrade
- Similar performance

Poster \rightarrow K. Dutta

True Energy [GeV]

Eur. Phys. J. C 82, 26 (2022)

Detector response - angular resolution

- KM3NeT/ORCA
- Between 5° and 10° at 10 GeV
- Kinematics dominated

IC upgrade

IC Nu-2024

Eur. Phys. J. C 82, 26 (2022)

Systematics – neutrino flux

- parametric approach
 - Spectral index
 - Normalisation, skews

- Hadronic production uncertainties
 - MCEq arXiv:1503.00544 Matrix Cascade Equations

Phys.Rev.D74:094009 (2006)

Systematics – neutrino flux

- Most recent development : daemonflux
- Combine Cosmic Ray composition, hadronic interaction model, adjust to muon spectrometer data
- Substantial improvements in relevant energy range possible
- Work in progress

Data Driven Hadronic interaction model (DDM) A. Fedynitch, M. Huber PRD 106 (2022)

Calibration of DDM+GSF with muon spectrometer data J. P. Yañez, A. Fedynitch, PRD 107, 123037 (2023)

Performance - Δm_{31}^2 , θ_{23}

- High statistics right at the first oscillation peak
- Actual fit done in multi-dimensional phase pace
- Example from KM3NeT/ORCA 715 kt-yr

Performance - Δm_{31}^2 , θ_{23}

- Excellent performance already now
- Δm_{31}^2 with ~2.0%, θ_{23} ~8%

J.Coelho, Poster → S. Peña-Martienz

J.P. Yanez, arXiv:2405.01263

Performance - Δm_{31}^2 , θ_{23}

- Competitive measurement after 3 years
- Δm_{31}^2 with ~1.5%, θ_{23} few % dependent from true value

21 Mt-yr

Performance -
$$\Delta m_{31}^2$$
, θ_{23}

- Octant of θ_{23} can be deterimed if not too close to maximal mixing

Eur. Phys. J. C 82, 26 (2022)

sensitivity (σ)

Median NMO

- KM3NeT/ORCA 21 Mt-yr
- 2029:2.5-4.5σ
- IC 2030 : 1.6 3.2σ
- Upgrade crucial for performance

Eur. Phys. J. C 82, 26 (2022)

R. Wendell, 2019/04

Performance NMO Adding constraints from JUNO

• Using Δm^2_{31} tension between JUNO and IC/ORCA when assuming wrong NMO significantly increases the rejection power for wrong NMO

- KM3NeT/ORCA & IC-upgrade combination with JUNO
- 2σ gain in sensitivity
- Overall combination : 5σ NMO determination by 2030

M. Prado Rodriguez, NuFact 2023

Performance v_{τ} cross-section

- Several 1000 ν_τ CC events in KM3NeT/ORCA and IceCube per year
- v_{τ} normalization measured to better than 5% after 3 years

Eur. Phys. J. C 82, 26 (2022)

IC Nu-2024 ³⁰

Performance v_{τ} cross-section

- Measurement from KM3NeT/ORCA (433 kt-yr)
- Close to kinematical threshold

Performance v_{τ} cross-section

- Probes different structure function components and new physics
- Possible situation 2030

Performance v_{τ} new physics

- New coupling to 3rd family not strongly constrained so far
- Probe mixing of additional sterile neutrinos or non-unitarity of PMNS
- Examples : θ_{34} 3 years KM3NeT/ORCA , α_{33} 433 kt-yr KM3NeT/ORCA
- Competitive measurement/limit can be derived

Poster \rightarrow L. Cerisy

Poster \rightarrow L. Bailly-Salins

Performance High energies

- Matter resonance from heavy mass states in TeV energies
- High sensitivity to sterile neutrinos in HE atmospheric neutrinos

Phys. Rev. Lett. 125, 141801 (2020)

Conclusion

- Next generation of atmospheric neutrino detectors becomes reality
- several 100,000 neutrino events within a few years
- Unambiguous determination of NMO before 2030

- Precision measurement of $\Delta m_{31}^2/\dot{\theta}_{23}$
- World largest sample of many 1000 v_{τ}

