A Decade of Atmospheric v Oscillations with IceCube

Juan Pablo Yáñez for the IceCube Collaboration

Neutrino 2024 Milan, Italy

j.p.yanez@ualberta.ca

ICECUBE

N.B. All comparisons are pre-Neutrino 2024

Neutrinos in IceCube

IceCube v detector

- Ice Cherenkov v detector
- 1.5 2.5 km under ice
- 5,160 DOMs on 86 strings
- 1 km³ volume
- High energy array spacing
 - Δ*z*=17m
 - $\Delta(x, y) = 125m$
- LE extension: DeepCore
 - Δ*z*=7m
 - $\Delta(x, y) = 40-70 \text{m}$

IceCube v detector

- Ice Cherenkov v detector
- 1.5 2.5 km under ice
- 5,160 **DOMs** on 86 strings
- 1 km³ volume
- High energy array spacing
 - Δ*z*=17m
 - $\Delta(x, y) = 125m$
- LE extension: DeepCore
 - Δ*z*=7m
 - $\Delta(x, y)$ =40-70m

IceCube v detector

- Ice Cherenkov v detector
- 1.5 2.5 km under ice
- 5,160 DOMs on 86 strings
- 1 km³ volume
- High energy array spacing
 - Δ*z*=17m
 - $\Delta(x, y) = 125m$
- LE extension: DeepCore
 - Δ*z*=7m
 - $\Delta(x, y)$ =40-70m

	A	
350r	n	

Neutrino interactions in IceCube

- Energy threshold between a few GeV (DeepCore) and 100 GeV (IceCube)
- Neutrinos mostly interact via Deep Inelastic Scattering (DIS)
 - Hadrons, electrons and most tau leptons produced "localized" particle showers
 - Muons tracks can go kilometers
 - PeV-scale τ tracks hundreds of meters

Events as seen by the detector

GeV events in **DeepCore** for *v* oscillations

Color indicates time (red=early, blue=late). Sphere size is proportional to number of photons observed.

TeV event in IceCube for sterile *v* **searches** 7

Analysis considerations by energy

DeepCore (GeV-scale)

- Use events starting in the DeepCore region
 - Strong atm. μ background suppression
 - Mostly contained, good E estimation
 - All flavor, with possibility to tag the presence of a muon (ν_{μ} -CC)

IceCube (TeV scale)

- Use tracks going through the detector
 - No containment, only lower limit on E
 - Sample is v_{μ} -CC only
- Excellent pointing
 - Atm. μ bkg suppressed by Earth

Analysis strategy for oscillations

Oscillation results

Three flavor paradigm, exotics and steriles

Measurements of neutrino oscillations (DeepCore)

$$P\nu_{\mu} \rightarrow \nu_{\mu} \simeq 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2}{4E}L\right)$$

Atmospheric oscillations progression

Atmospheric oscillations progression

How? – **strong** signal, multiple **L&E**

- Broad, single minimum region
 - Visible in the raw data
- Multiple truly long baselines

For more details see: IceCube, PRD 108, 012014 **(2023)**

How? – resolutions

How? – systematics handling

Effects from changing optical efficiency of DOMs (energy scale) Mixed Tracks 6 0.0 4 percent change -0.2 $\cos heta_{ m reco}$ 2 -0.4-0.6 0 -0.8 -2 -1.016 32 64 128 8 16 32 64 128 8 Ereco (GeV) E_{reco} (GeV)

Effect from changing one atm. flux parameter

How? – Systematics handling

Effects from changing optical efficiency of DOMs

Effect from changing one atm. flux parameter

Atm. Osc. - Newest result

- CNN-based classification and reco
 - Uses inputs that our MC describes well
 - Recovers events that are hard to handle
 - 150,000 ν candidates in 9 years of data
- Best fit

 $\sin^2 \theta_{23} = 0.54^{+0.04}_{-0.03}$ $\Delta m^2_{32} = 2.40^{+0.05}_{-0.04} \times 10^{-3} \text{ eV}^2$ GoF *p*-value: 19%

×10

3.0

0.0

1.0

0.8

 10^{1}

Ratio

Events 1.5

Atm. Osc. - Newest result

- CNN-based classification and reco
 - Uses inputs that our MC describes well
 - Recovers events that are hard to handle
 - 150,000 ν candidates in 9 years of data

Data/MC

 10^{2}

L/E [km/GeV]

Data

 10^{3}

Ratio

1.0 0.8

 10^{1}

10²

L/E [km/GeV]

• Best fit

 $\sin^2\theta_{23} = 0.54^{+0.04}_{-0.03}$ $\Delta m_{32}^2 = 2.40^{+0.05}_{-0.04} \times 10^{-3} \text{ eV}^2$ GoF *p*-value: 19%

 $\times 10$

3.0

0.0

1.2

1.0

0.8

 10^{1}

Ratio

Events 1.5

 10^{3}

Ratio

0.8

101

 10^{2}

L/E [km/GeV]

 10^{3}

Atm. Osc. - Newest result

CNN-based classification and reco

• Best fit

GoF (

 $\sin^2\theta_{23} = 0.54^{+0.04}_{-0.03}$

э́ ш 1.5

0.0

1.2

1.0

 10^{1}

Ratio

 $\Delta m_{32}^2 = 2.40^{+0.05}_{-0.04} \times 10^{-3} \text{ eV}^2$

- Uses inputs that our MC describes well
- Recovers events that are hard to handle
- 150,000 ν candidates in 9 years of data

See poster by Julia Book on

Friday on HNL limits with this

sample

 10^{3}

Data/MC

 10^{2}

L/E [km/GeV]

а 0.5

0.0

1.2

0.8

 10^{1}

 10^{2}

L/E [km/GeV]

 10^{3}

1.0 Latio

101

 10^{2}

L/E [km/GeV]

 10^{3}

Searches for sterile neutrinos (DeepCore & IceCube)

- More elements in the neutrino mixing matrix and a new mass splitting
 - Modulate standard oscillations at GeV energies
 - Can create large oscillations at TeV energies where none are expected
 - Matter effects enhance them even for small mixing
- IceCube tests so far
 - 3+1 model at GeV and TeV energies
 - 3+1+decay at TeV energies

$$\mathbf{U} \equiv \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

Sterile ν search progression (GeV regime)

Sterile ν search progression (TeV regime)

Newest sterile ν search (TeV regime)

- Improved sample
 - 370k events
 - Split starting events
 - Updated flux systematics
- Results
 - <u>No sterile hypothesis</u> <u>p-value = 3%</u>
 - Non-zero fit significance: 2σ
 - Decay scenario disfavored

Counts

Best fit

----- Null fit

Data

Comparison of E regimes

- Improved sample
 - 370k events
 - Split starting events
 - Updated flux systematics
- Results
 - <u>No sterile hypothesis</u> <u>p-value = 3%</u>
 - Non-zero fit significance: 2σ
 - Decay scenario disfavored

The future

The IceCube Upgrade

- New devices in the ice
 - Recalibration of all data
 - Lower E threshold for DC

IceCube Upgrade potential

- Significant increase of events at 10 GeV
- Projecting precision on std. oscillations
 - Includes selection, reconstruction and current uncertainties

IceCube Upgrade potential

- Significant increase of events at 10 GeV
- Projecting precision on std. oscillations
 - Includes selection, reconstruction and current uncertainties

IC86 IceCube Simulation IC93 0.25 0.20 -ZHE 0.15 -See poster by Kaustav Dutta from Tuesday on resolutions with the IceCube Upgrade

0.30

10³

Maustralia University of Adelaide

BELGIUM

UCLouvain Université libre de Bruxelles Universiteit Gent Vrije Universiteit Brussel

CANADA

Queen's University University of Alberta–Edmonton

DENMARK

University of Copenhagen

GERMANY

Deutsches Elektronen-Synchrotron ECAP, Universität Erlangen-Nürnberg Humboldt–Universität zu Berlin Karlsruhe Institute of Technology Ruhr-Universität Bochum **RWTH Aachen University** Technische Universität Dortmund Technische Universität München Universität Mainz Universität Wuppertal Westfälische Wilhelms-Universität Münster

Thank you for your attention, on behalf of

THE ICECUBE COLLABORATION

ITALY University of Padova

JAPAN Chiba University

NEW ZEALAND University of Canterbury

REPUBLIC OF KOREA

Chung-Ang University Sungkyunkwan University

SWEDEN

Stockholms universitet Uppsala universitet

SWITZERLAND Université de Genève

TAIWAN Academia Sinica

UNITED KINGDOM University of Oxford

UNITED STATES

Clark Atlanta University Columbia University Drexel University Georgia Institute of Technology Harvard University Lawrence Berkeley National Lab Loyola University Chicago Marguette University

of Technology Mercer University Michigan State University **Ohio State University** Pennsylvania State University South Dakota School of Mines and Technology Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas

Massachusetts Institute

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

FUNDING AGENCIES

Federal Ministry of Education and Research (BMBF) Japan Society for the Promotion of Science (JSPS) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)

Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat

The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

icecube.wisc.edu

Summary & Outlook

- Precision measurement of atmospheric oscillation parameters
 - Significant progress over the last decade
 - DC data agrees with 3-flavor oscillation paradigm – no evidence for sterile v's
 - We continue to test for new physics
 - NSI, v_{τ} appearance, decoherence
- Upgrade will help both energy regimes
 - Better LE data → improved precision on standard oscillations
 - Recalibration of detector response → better understanding of the HE data

Additional slides

Atmospheric neutrino data

GeV events in DeepCore for v oscillations

TeV event in IceCube for sterile v searches

Color indicates time (red=early, blue=late). Sphere size is proportional to number of photons observed.

Detector calibration

- An anisotropy in light yield has been observed for years
 - Limited success explaining it with varying scattering, absorption
- Recent studies show the effect is from birefringence
 - Light rays deflected due to preferred crystal orientations

Artist illustration of the deflection

Detector calibration

- An anisotropy in light yield has been observed for years
 - Limited success explaining it with varying scattering, absorption
- Recent studies show the effect is from birefringence
 - Light rays deflected due to preferred crystal orientations
- Effect included in new studies

Parameterizing calibration information

1.10

Fischer, Naab, Trettin arXiv:2305.02257

- Detector-related systematics dominate uncertainty
 - Multiple strategies to account for their impact
- MC production
 - MC at multiple parameter combinations
 - MC with smoothly varying parameters
- Parameterization
 - Gradients obtained from binned MC expectation
 - Event-wise weights from PDFs • obtained with ML

Atmospheric flux uncertainties

- Established method
 - Baseline model + variations based on
 - Using MCEq to predict changes
 - Gradient method to fit parameter

- New strategy
 - daemonflux: self-consistent data-driven flux with uncertainties
 - Key: only fit integral of meson yields, calibrate with μ and fixed target data

L/E figures for 2018 result

IceCube Preliminary 1.4Preliminary 1.2 $\stackrel{\rm lltu}{\scriptstyle \ \ \, }_{X \ 0.8}^{1.0}$ 0.6 🛉 🌢 data bestfit . 0. PRL 2018 1.41.2 $\stackrel{\rm IIII}{\searrow} {}^{1.0}_{0.8}$ 0.6 0.41.01.52.0-0.50.0 0.52.53.03.5 $\log 10 \text{ L/E} [\text{km/GeV}]$

log10 L/E distribution; cascade only

log10 L/E distribution; track only

Atmospheric oscillations progression

Standard oscillations (DC) to $\nu_{ au}$

- Results from older sample
- Analysis with new sample will come next

How? – resolutions

Relevant events are fully contained

energy

Standard oscillations 2013 (DC)

$$P\nu_{\alpha} \rightarrow \nu_{\beta} \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$$

- New sample incorporating
 - Streamlined event selection, higher efficiency
 - Improved sensor calibration
 - More precise treatment of systematics
- First looked at the highest quality events

Standard oscillations 2013 (DC)

$$P\nu_{\alpha} \rightarrow \nu_{\beta} \simeq \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$$

• Best fit values $\sin^2 \theta_{23} = 0.505^{+0.051}_{-0.050}$ $\Delta m^2_{32} = 2.41 \pm 0.084 \times 10^{-3} \text{ eV}^2$

FIG. 18. Change in the expected number of events in the analysis when independently varying the values of Δm_{32}^2 (top) and $\sin^2 \theta_{23}$ (bottom) to the their 90% confidence level. The mass splitting changes the position of the oscillation probability, while the mixing angle modifies the amplitude. The largest change is observed in the track channel.

physics systematics

FIG. 28. DOM optical efficiency.

FIG. 35. Atm. flux G parameter.

FIG. 29. Hole ice p0.

IG. 42. Deep inelastic scattering correction to CSMS.

Phys. Rev. D **108**, 012014

Control regions circled

FIG. 7. Difference between the nominal ($\theta_{23} = 45^{\circ}$) and pulled ($\theta_{23} = 50^{\circ}$) MC distributions relative to the statistical error of the nominal MC for the analysis sample in analysis binning.

FIG. 8. Difference between the nominal DOM efficiency value and pulled (+10%) MC distributions relative to the statistical error of nominal MC for the analysis sample in analysis binning.

- CNN-based classification and reco
 - Uses inputs that our MC describes well
 - Recovers events that are hard to handle
 - 150,000 ν candidates in 9 years of data
- Best fit
 - $\sin^2 \theta_{23} = 0.505^{+0.051}_{-0.050}$
 - $\Delta m^2_{32} = 2.41 \pm 0.084 \times 10^{-3} \,\mathrm{eV^2}$
 - *p*-value: 19%

Parameter	Nominal	Prior width	Fit value	Pull (σ)		
Detector:						
DOM efficiency	+0%	$\pm 10\%$	+1.8%	0.18		
Ice absorption	+0%	$\pm 5\%$	-3.5%	-0.71		
Ice scattering	+5%	$\pm 10\%$	+1.8%	-0.32		
Rel. eff. p_0	0.10	[-0.6, 0.5]	-0.14	-		
Rel. eff. p_1	-0.05	[-0.2, 0.2]	-0.07	-		
BFR efficiency	0.0	[0, 1]	0.48	-		
Atm. flux:						
$\Delta \gamma_{\nu}$	0.0	± 0.1	-0.011	-0.11		
$\Delta \pi^{\pm}$ yields I	0.0	$\pm 61\%$	+42%	0.68		
$\Delta \pi^{\pm}$ yields G	0.0	$\pm 30\%$	-4.2%	-0.14		
$\Delta \pi^{\pm}$ yields H	0.0	$\pm 15\%$	-12%	-0.81		
ΔK^+ yields W	0.0	$\pm 40\%$	+4.2%	0.11		
ΔK^+ yields Y	0.0	$\pm 30\%$	-6.9%	-0.23		
Cross-section:						
M_{Λ}^{CCQE}	$0.99 {\rm GeV}$	+25%	-4.5%	-0.30		
$M^{\rm ACCRES}$	1.12 GeV	$\pm 20\%$	-3.9%	-0.20		
DIS CSMS	0.0	± 1.0	0.12	0.12		
Normalization:						
$A_{\rm eff}$ scale	+0%	[-90%, +100%]	-10%	-		
Atm. muons:						
Atm. μ scale	+0%	$\pm 40\%$	-3.8%	-0.10		

IceCube.

arXiv:2405 02163

IceCube, arXiv:2405.02163

FIG. 10. Expected 1σ uncertainty of the physics parameters by assuming the best-fit values from Table II and fitting for each group of systematic uncertainties independently with the others fixed at their best-fit values compared to statistical uncertainty assuming Wilks' theorem.

Sterile ν search progression (TeV regime)

2024 TeV sterile search - sensitivity

2024 TeV sterile search

FIG. 11. Expected and Observed Signal. Top panels: Comparison of the best-fit and null hypothesis expectations for reconstructed starting and through-going events. Red (blue) colors indicate an excess (deficit) of events in the best-fit prediction relative to the null hypothesis. Bottom panels: Difference between data pulls for the best-fit values $(\sin^2(2\theta_{24}) = 0.16 \text{ and } \Delta m_{41}^2 = 3.5 \text{ eV}^2)$ and null hypotheses for the starting and through-going samples. Purple indicates the best-fit is preferred in a given bin; orange indicates a preference for the null hypothesis.

Nuisance	Central	1σ width	Allowed	Pull Null	Pull Best	Pull Difference			
parameter	value	of prior	range	Fit (σ)	Fit (σ)	Null-Best Fit (σ)			
Overall normalization (Sec. III C)									
Norm	1.00	0.2	0.10, 3.00	-0.05	0.41	0.46			
Local response of DOMs (Sec. III E)									
DOM efficiency	1.00	0.10	0.97, 1.06	0.02	0.03	0.01			
Forward hole ice	-1.00	10.00	-5.35, 1.85	0.28	0.27	0.01			
Bulk ice (Sec. III D)									
Amplitude 0	0.00	1.00	-3.00,3.00	0.64	0.69	0.05			
Amplitude 1	0.00	1.00	-3.00,3.00	1.36	1.19	0.17			
Amplitude 2	0.00	1.00	-3.00,3.00	1.35	1.42	0.07			
Amplitude 3	0.00	1.00	-3.00,3.00	0.74	0.75	0.01			
Amplitude 4	0.00	1.00	-3.00,3.00	1.12	1.16	0.04			
Phase 1	0.00	1.00	-3.00,3.00	-1.60	-1.67	0.07			
Phase 2	0.00	1.00	-3.00,3.00	-0.59	-0.54	0.05			
Phase 3	0.00	1.00	-3.00,3.00	-0.21	-0.08	0.13			
Phase 4	0.00	1.00	-3.00,3.00	0.10	0.27	0.17			
Conventional flux (Sec. III A)									
Atm. density (ρ_{atm})	0.00	1.00	-3.00,3.00	-0.48	-0.55	0.07			
Kaon energy loss ($\sigma_{\text{K-Air}}$)	0.00	1.00	-3.00,3.00	0.66	0.51	0.15			
\overline{g} K ⁺ _{158G}	0.00	1.00	-2.00, 2.00	0.93	0.89	0.04			
2 K	0.00	1.00	-2.00,2.00	0.29	0.24	0.05			
$\pi \pi^{+38G}$	0.00	1.00	-2.00,2.00	0.15	-0.06	0.21			
$\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}$	0.00	1.00	-2.00.2.00	0.17	-0.03	0.20			
$\vec{R} = \frac{207}{K_{\pi}^+}$	0.00	1.00	-2.00.2.00	0.28	0.09	0.19			
$\vec{\mathbf{g}} = \mathbf{K}_{-}$	0.00	1.00	-1.50.2.00	0.24	0.01	0.23			
$\frac{1}{2} \frac{1}{\pi^+}$	0.00	1.00	-2.00.2.00	-1.50	-1.23	0.20			
$rac{\pi^2 P}{\pi^2}$	0.00	1.00	-2.00,2.00	-1.00	-1.25	0.27			
H <i>n</i> ₂ <i>P</i>	0.00	1.00	2.00,2.00	-1.08	-0.85	0.23			
P2P	0.00	1.00	-2.00,2.00	-0.17	-0.15	0.07			
$-CSF_{-}$	0.00	1.00	4 00 4 00	-0.17	-0.10	0.02			
E GSF	0.00	1.00	-4.00,4.00	-0.12	-0.28	0.45			
E GSF2	0.00	1.00	-4.00,4.00	-0.12	-0.28	0.10			
CSF.	0.00	1.00	-4.00,4.00	-0.12	-0.05	0.07			
S CSF-	0.00	1.00	-4.00,4.00	1.82	2.23	0.12			
C CSF	0.00	1.00	-4.00,4.00	-1.17	-1.31	0.42			
Non-conventional flux (Sec. III.B)	0.00	1.00	-4.00,4.00	-1.17	-1.01	0.14			
$\frac{\Phi^{\rm HE}/10^{-18} {\rm CoV}^{-1} {\rm sr}^{-1} {\rm s}^{-1} {\rm sr}^{-2}}{\Phi^{\rm HE}/10^{-18} {\rm CoV}^{-1} {\rm sr}^{-1} {\rm s}^{-1} {\rm sr}^{-2}}$	0.787	0.26	0.00.2.00	0.25	0.61	0.26			
Ψ /10 GeV SI S CIII	0.101	0.30	4 00 6 00	*4.95	*4.21	N/A constion			
$\Delta_{\rm o}$ HE tilt from 2.5	0.00	0.26	4.00,0.00	4.20	-4.31	N/A, see caption			
$\Delta \gamma_1^{\text{HE}}$, the from -2.5	0.00	0.30	-2.00,2.00	2.02	2.39	0.23			
$\Delta \gamma_2^{-2}$, the from -2.5	0.00	0.36	-2.00,2.00	-0.22	0.10	0.21			
Neutrino attenuation (Sec. III F)									
ν attenuation	1.00	0.10	0.82, 1.18	0.12	-0.14	0.26			
ν attenuation	1.00	0.10	0.82, 1.18	0.04	-0.02	0.06			

2024 Sterile neutrinos split tests

Upgrade: precision oscillations

Upgrade: spectrum

Upgrade: resolutions

Steriles in DeepCore

<u>A. Terliuk,</u> PhD thesis Figure 3.18: The survival probabilities for muon neutrinos (left) and antineutrinos (right) for the standard oscillations (black curve) and various realisations of the sterile neutrino mixing (coloured lines). The parameters of the standard mixing are $\Delta m_{31}^2 = 2.515 \cdot 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{23} = 0.565$, while $\Delta m_{41}^2 = 1 \text{ eV}^2$. The averaging in $\pm 1\%$ window is applied to reduce the effects of the fast oscillating component caused by Δm_{41}^2 .