Physics of ν Oscillation with Atmospheric v Detectors

Iván Martínez Soler

Durham University

XXXI International Conference on Neutrino Physics and Astrophysics

IceCube Neutrino Observatory Antarctica

Atmospheric Neutrinos

Atmospheric neutrinos are created in the collision of cosmic rays with the atmospheric nuclei

Ivan Martinez-Soler (IPPP)

E. Richard et al. (SK), PRD 94 (2016) 5

Evidence for Flavor Oscillation

The measurement of the **atmospheric neutrino** flux provided evidence for neutrino flavor oscillation.

Flavor oscillations are the only evidence that **neutrinos are** massive particles

Ivan Martinez-Soler (IPPP)

Takaaki Kajita (Super-kamiokande) Neutrino 98

$$i\frac{d\nu}{dE} = \frac{1}{2E} \left(U^{\dagger} \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U \right) \nu \qquad \nu_{\alpha} = 2$$

Ivan Martinez-Soler (IPPP)

The less constrained parameters are:

In this talk, we aim to investigate the insights that atmospheric neutrinos can provide on these uncertainties

Ivan Martinez-Soler (IPPP)

3ν Mixing

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP 09 (2020)

The less constrained parameters are:

In this talk, we aim to investigate the insights that atmospheric neutrinos can provide on these uncertainties

Ivan Martinez-Soler (IPPP)

3ν Mixing

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP 09 (2020)

The less constrained parameters are:

In this talk, we aim to investigate the insights that atmospheric neutrinos can provide on these uncertainties

Ivan Martinez-Soler (IPPP)

3ν Mixing

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP 09 (2020)

Neutrino Evolution in Matter

Matter effects play a crucial role in the evolution of atmospheric neutrinos

$$i\frac{d\nu}{dE} = \frac{1}{2E_{\nu}} \left(U^{\dagger} \text{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U \pm V_{mat} \right) \nu$$
$$V_{mat} = 2\sqrt{2}G_F N_e E_{\nu} \text{diag}(1, 0, 0)$$

Ivan Martinez-Soler (IPPP)

Sub-GeV

For **E** < **1GeV**, atmospheric neutrino oscillations are **dominated** by Δm_{21}^2

The CP-violation depends on the three oscillation lengths.

$$P_{CP} = -8J_{CP}^{max}\sin(\delta_{cp})\sin(\Delta_{21})\sin(\Delta_{31})\sin(\Delta_{32})$$

• The oscillations introduced by Δ_{31} and Δ_{32} averaged

Oscillation phase
$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{4E_{\star}}$$

Peres and Smirnov, NPB 680 (2004) Akhmedov, Maltoni and Smirnov, JHEP 06 (2008) Peres and Smirnov, PRD 79 (2009) Denton and Parke, PRD 100 (2019) Parke, PRD 103 (2021)

Ivan Martinez-Soler (IPPP)

The **CP-violation** term is **enhanced** due to the solar oscillation.

Sub-GeV

For atmospheric neutrinos, both fluxes are sensitive to δ_{CP}

• In the case of $\delta_{cp} \neq 0$, the CPT conservation implies

$$P(\nu_{\mu} \to \nu_{e}) \neq P(\nu_{e} \to \nu_{\mu})$$

• The impact of δ_{cp} depends mainly on the neutrino direction

- $P_{\mu\mu}$ contribute to measuring the phase via $\cos\delta_{CP}$

Minakata, Nunokawa, Parke, PRD 66 (2002) Minakata, Nunokawa, Parke, PLB 537 (2002) Denton and Parke, PRD 109 (2024)

Ivan Martinez-Soler (IPPP)

At the **GeV scale**, trajectories crossing the mantle experience an **MSW** resonance, making neutrinos sensitive to the **mass ordering**:

The matter effect enhances the oscillation of neutrinos (anti- \bullet neutrinos) for NO (IO)

Ivan Martinez-Soler (IPPP)

Palomares-Ruiz and Petcov, NPB 712 (2005) Akhmedov, Maltoni and Smirnov, JHEP 05 (2007)

In the multi-GeV region, neutrino evolution is dominated by Δm^2_{31} and $\sin^2\theta_{23}$

• $P_{\mu e}$ shows a linear dependence on the octant of θ_{23}

- $P_{\mu\mu}$ can determine whether θ_{23} is **maximal** 0.8 mixing. ಗ ಗ ಗ ಲ .6'
- The matter effects can resolve the degeneracy between the two octants.
- 0.2

0.0

Ivan Martinez-Soler (IPPP)

Super-Kamiokande

Several experiments have measured the atmospheric neutrino flux, with SK starting from the sub-GeV scale.

Super-Kamiokande (SK)

- 22.5 kton water Cherenkov
- Small sample at multi-GeV due to the volume
- The event sample is divided in FC, PC and Up- μ

<u>Abe et al. (Super-Kamiokande), PRD 97 (2018)</u>

Ivan Martinez-Soler (IPPP)

Hyper-Kamiokande is the **next generation** of water-Cherenkov experiment in Japan

Super-Kamiokande (SK)

- 22.5 kton water Cherenkov
- Small sample at multi-GeV due to the volume
- The event sample is divided in FC, PC and Up- μ

Abe et al. (Super-Kamiokande), PRD 97 (2018)

Ivan Martinez-Soler (IPPP)

Hyper-Kamiokande

Hyper-Kamiokande (HK)

- 187 kton water Cherenkov (8.4 larger than SK)
- 20% photo coverage with improved photosensors

Bian et al. (Hyper-Kamiokande), Snowmass 2021 Abe et al. (Hyper-Kamiokande), arXiv:1803.04163

IceCube

The **neutrino telescopes** measure the atmospheric neutrino flux from the **multi-GeV** scale

- $\sim 1 \text{km}^3$ ice Cherenkov
- The sample is divided into tracks and cascades
- The upgrade will add seven additional strings lowering the energy threshold to ~1GeV

Ishihara (IceCube). PoS ICRC2019

ORCA

The total expected volume is 7 Mt, with events classified into high-purity tracks, low-purity tracks, and showers

Ivan Martinez-Soler (IPPP)

- **ORCA** measures the multi-GeV component of the atmospheric neutrino flux from ~2GeV

Systematic Uncertainties

Flux systematics

The flux has uncertainties in normalization, energy dependence, up/down, ν_e/ν_μ , $\overline{\nu}/\nu$

Ivan Martinez-Soler (IPPP)

Combining all experiments reduces the systematic impacts, thereby **enhancing the sensitivity**

Cross-section systematics

The wide range of energy of the flux leads atmospheric neutrinos to engage in diverse interactions.

Barr, Gaisser, Robbins, Stavev, PRD 74 (2006) Yañez-Garza and Fedynitch, PRD 107 (2023)

Combined Analysis: θ_{23} and Δm_{31}^2

SuperK + SKGd (5 years) Making a combined analysis of SK, HK, IceCube-upgrade 0.0030 IceCube-Upgrade (5 years) and **ORCA** we have estimated the sensitivity to δ_{cp} , θ_{23} and the ORCA (3 years) HyperK (2.5 years)mass ordering Combined fit 0.0028 Trivial χ^2 sum ORCA 1200 Δm_{31}^2 [eV²] $\sin^2 \theta_{23} = 0.58$ 1000 $\sin^2\theta_{23} = 0.3$ $\sin^2\theta_{23} = 0.7$ Events/3years 800 No Osc. 0.0024 -600 b 400 0.0022 · 200 $\cos\theta \in |-1, -0.8|$ Cascades 0.3 0.4 0.50.6 10^{0} 10^{1} $\sin^2 \theta_{23}$ $E_r[GeV]$ Argüelles, Fernandez, **IMS** and Jin, <u>PRX 13 (2023)</u>

Ivan Martinez-Soler (IPPP)

Combined Analysis: Mass Ordering

- We expect to reach 6σ by the end of the decade.

Ivan Martinez-Soler (IPPP)

Combined analysis: δ_{cp}

The sensitivity to δ_{cp} is dominated by **SK** and **HK**

• The e-like and μ -like without neutron tagged dominates the sensitivity

Ivan Martinez-Soler (IPPP)

Argüelles, Fernandez, **IMS** and Jin, <u>PRX 13 (2023)</u>

Complementarity between Atm. and LBL

Atmospheric neutrinos can provide complementary constraints on oscillation parameters

<u>Abe et al. (T2K), EPJC 83 (2023)</u> Acero et al. (NOvA), PRD 106 (2022)

Ivan Martinez-Soler (IPPP)

Boosting the Sensitivity: Inelasticity

The mass ordering and the CP-phase predict different oscillations for neutrinos and antineutrinos.

- and cascades.
- between the leptonic and the hadronic vertex.

Ribordy and Smirnov, PRD, 87 (2013)

Ivan Martinez-Soler (IPPP)

Boosting the Sensitivity: Inelasticity

The **inelasticity** allows for a **50% increase** in sensitivity to the mass ordering.

Giner Olavarrieta, Jin, Argüelles, Fernández, **IMS**, <u>arXiv: 2402.13308</u>

Ivan Martinez-Soler (IPPP)

- Excellent particle identification capabilities.
- Precise measurement of low-energy particle kinematics.

Anderson et al. (ArgoNeuT), JINST 7 (2012) Abi et al. (DUNE), arXiv: 2002.03005

Ivan Martinez-Soler (IPPP)

LArTPCs

Calorimetric 0_n $\overline{\text{DNN}} 0_n$ Understanding how incoming neutrine calorimetric correlate with final states enhances (Entioning reconstruction.

Calorimetric reconstruction provides good results for GeV neutrinos with visible protons

$$E_{\nu}^{\text{cal}} = E_{\ell} + \sum_{i}^{\text{mesons}} E_i + \sum_{i}^{\text{baryons}} K_i$$

Events topologies based on **visible protons** allows statistical separation of neutrinos and antineutrinos

Number of protons	Events/400 kton year	
СС-0р0п	~7000	$\overline{ u}$ dominated
СС-1р0п	~12000	u dominated

Ivan Martinez-Soler (IPPP)

LArTPCs

 δ_{cp} causes a **significant deviation** in DUNE's expected sub-GeV events.

Gonzalez, <u>PRL 123 (2019)</u>

Ivan Martinez-Soler (IPPP)

LArTPCs

DUNE can exclude ranges of δ_{cp} with more than 3σ confidence

Expanding the analysis to **higher energies** will allow the measurement of **mass ordering**

- The energy and angular resolution of LArTPCs allow for resolving matter effects.
- Identifying **Michel electrons** and μ^- capture \bullet enhances neutrino and antineutrino separation.

Ivan Martinez-Soler (IPPP)

LArTPCs

F. Cavanna et al. (LArIAT), arXiv: 1406.5560 <u>M. Sorel, JINST 9 (2014) P10002</u> Abi et al. (DUNE), arXiv: 2002.03005

Ternes, Gariazzo, Hajjar, Mena, Sorel and Tórtola, PRD 100 (2019)

Conclusions

- Neutrino oscillation is entering the precision era, but unknown parameters remain.
- In the near future, atmospheric neutrinos can provide valuable information about the less constraints parameters:
 - The ordering can be resolved to $\sim 6\sigma$
 - The wrong θ_{23} octant can be excluded at 3σ
 - Part of the parameter space of the CP phase can be explored at 3σ
- In the future, new detectors like DUNE will be able to improve the precision over the CP phase and the mass ordering.

Ivan Martinez-Soler (IPPP)

Argüelles, Fernandez, **IMS** and Jin, <u>PRX 13 (2023)</u>

Grazie!

Combined analysis: δ_{cp}

The sensitivity to the CP phase depends on the true value

Ivan Martinez-Soler (IPPP)

A large fraction of δ_{CP} can be excluded at 99% CL using only atmospheric neutrinos

Bonus: sensitivity over θ_{13} The measurement of the atmospheric resonance also gives us a sensitivity to $\sin^2 \theta_{13}$

Ivan Martinez-Soler (IPPP)

Flux uncertainties

The uncertainties on the atmospheric neutrino flux reduce the sensitivity to the mixing parameters.

$$\Phi_{\alpha}(E, \cos \zeta) = f_{\alpha}(E, \cos \zeta) \Phi_0 \left(\frac{E}{E_0}\right)^{\delta} \eta(\cos \zeta)$$

Ivan Martinez-Soler (IPPP)

 $(s \zeta)$

These systematics are common to both experiments

Systematic	Uncert./Pric
$\Phi_0(E < 1 \text{ GeV})$	25%
$\Phi_0(E > 1 \text{ GeV})$	15%
$ u_e/ u_\mu$	2%
$\overline{ u}/ u$	2%
δ	20%
$C_{u,d}$	2%

K. Abe et al. (Super-Kamiokande), PRD 97 (2018)

Cross-section uncertainties

Different types of interactions affect the atmospheric neutrino interaction due to the large energy range covered by the flux

Ivan Martinez-Soler (IPPP)

These systematics are common to water **Cherenkov experiments**

Systematic	Uncer./Prior
CCQE	10%
CCQE $\nu/\overline{\nu}$	10%
CCQE e/µ	10%
CC1 π	10%
CC1 π π^0/π^\pm	40%
CC1 $\pi \nu_e / \overline{\nu_e}$	10%
CC1 $\pi \ u_{\mu}/\overline{ u_{\mu}}$	10%
Coh.π	100%
Axial Mass	10%
NC hadron prod.	5%
NC over CC	10%
${ u_{ au}}$	25%
Neutron prod. (SK)	15%
DIS	10%

K. Abe et al. (Super-Kamiokande), PRD 97 (2018)

Systematic Impact

Ivan Martinez-Soler (IPPP)

A detailed analysis of all the systematics was performed, revealing that flux uncertainties had a larger impact on δ_{CP}

Booting the Sentivity with Inelasticity

To test the results, we explored different uncertainties in the inelasticity

most of the energy goes to the cascade.

Ivan Martinez-Soler (IPPP)

LArTPCs

Ivan Martinez-Soler (IPPP)

Kelly, Machado, IMS, Parke, Perez-Gonzalez, PRL 123 (2019)

In case of a tension in the determination of δ_{CP} , atmospheric neutrinos can contribute to solve it

Kelly, Machado, IMS, Parke, Perez-Gonzalez, PRL 123 (2019)

Ivan Martinez-Soler (IPPP)

LArTPCs

Super-Kamiokande

Ivan Martinez-Soler (IPPP)

Comparison between Neutrino Telescopes

Effective volume

Argüelles, Fernandez, IMS and Jin, PRX 13 (2023)

Ivan Martinez-Soler (IPPP)

