SOLAR NEUTRINOS: **PRECENT RESULTS AND PROSPECTS**

J. MANEIRALIP LISBON, PORTUGAL

ON BEHALF OF THE SNO+ COLLABORATION THANKS: SK, HK, DUNE, JUNO, THEIA, JNE, CLOUD

NEUTRINO 2024 XXXI INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS JUNE 16-22, 2024 MILAN, ITALY

OUTLINE

- Open questions in solar neutrino physics
- New and recent results
 - Super-Kamiokande
 - SNO+
- Prospects for large future experiments
 - Water: HK
 - LAr: DUNE
 - Scintillator: JUNO, JNE, Theia, CLOUD

See also opening talk on Borexino by Gianpaolo Bellini And several posters, highlighted next

NEUTRINOS AS A PROBE OF THE SUN

- Solar neutrino observations
 - Sun burns via pp chain (99%), CNO cycle (1%) √
- Sun's composition still uncertain. Two classes of solar models high or low metallicity Z [abundances X: H, Y: He, Z: Li, ...]
 - HighZ favored by helioseismology

J. Maneira (LIP)

3

THE SUN AS A SOURCE OF NEUTRINOS

- High flux, pure Ve source, large range of crossed densities

 - and other models still possible

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

• Sensitive to matter effects, sign of Δm_{21}^2 . MSW upturn and day-night hard to observe With SNO NC, precise measurement of Pee at ⁸B energies: tension with KamLAND Dependent on SSM otherwise, Pee still largely unconstrained in transition region: NSI

CURRENT EXPERIMENTS

SUPER-KAMIOKANDE

SUPER-KAMIOKANDE

- Largest detector sensitive to solar neutrino energies: 22.5 kton fiducial
- - Significant improvements in energy reconstruction and uncertaities
- Since 2020: SK-V (prep for Gd), SK-VI (0.01% Gd), SK-VII (0.03% Gd)

Recently published: complete analysis of SK phases I - IV: over 20 years of data!! REF. 4,5

Phase	SK-I	SK-II	SK-III	SK-IV
Period (Start)	April '96	October '02	July '06	September '08
Period (End)	July '01	October '05	August '08	May '18
Livetime [days]	1,496	791	548	2,970
ID PMTs	11,146	5,182	11,129	11,129
OD PMTs	1,885	1,885	1,885	1,885
PMT coverage [%]	40	19	40	40
Energy thr. [MeV]	4.49	6.49	3.99	3.49
SUPERK	ATM	OSPHE	RIC N	EUTRIN
TALK: 66	8 / N	1. POSI		A-ZEZU

SUPERK SOLAR NEUTRINO POSTERS: 274 / A. YANKELEVICH 502 / Y. NAKANO

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

TRINO

EZULA

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

J. Maneira (LIP)

⁸B SOLAR NEUTRINO SPECTRUM

J. Maneira (LIP)

9

SK OSCILLATIONS GLOBAL FIT

SK fit, fixed θ_{13}

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

• Solar best-fit value updated to: $\Delta m_{21}^2 = 6.10^{+0.95}_{-0.81} \times 10^{-5} eV^2$

• $\sim 1.5 \sigma$ away from KamLAND

NEW PHASES CONTINUE...

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

SNO+

Posters:

- 544 / D. Cookman / Measuring Solar Neutrino Oscillations in the SNO+ Detector ullet
- 416 / G. Milton / First Indications of CC Solar Neutrino Interactions on Carbon-13 ullet
- 525 / S. Andringa / Reactor Antineutrino Oscillations and Geoneutrinos in SNO+ \bullet
- SNO+ liquid scintillator phase
- 483 / J. Page / Event by Event classification of alpha-n and IBD Interactions at SNO+ \bullet
- ightarrow
- 581 / B. Tam and S. Manecki / The SNO+ Tellurium Deployment Programme \bullet

255 / A. Inácio and R. Hunt-Stokes / Time-based event discrimination methods for solar neutrino analyses in the

593 / C. Hewitt and M. Anderson / Machine learning for fast event reconstruction in the SNO+ scintillator phase

THE SNO+ EXPERIMENT

Repurposing the Sudbury Neutrino Observatory (SNO) detector

Rope system Hold-up and -down Low Radioactivity

Acrylic Vessel (AV) 12 m diameter

> Ultra-Pure Water

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

2 km underground $\sim 70 \text{ muons/day}$

~9300 PMTs

Purification plant

Target Material

- 1. Water: 905 tonnes
- 2. LAB Scintillator: 780 tonnes
- 3. Tellurium loading: +3.9 tonnes

THE SNO+ EXPERIMENT

Multi-purpose experiment at SNOLAB - Sudbury, Ontario, Canada

Solar Neutrinos

Reactor Neutrinos

eutrinoless uble-Beta Decay

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

Supernova Neutrinos + exotics

Geo-Neutrinos

SNO+ TIMELINE

2018 2019 2020 2021 2017

Water phase

- High Rn
- Low Rn

Partial fill phase Scintillator over water. Stop in fill due to Covid.

SNO+ PERFORMANCE

- Water Phase
 - Extensive calibrations: well-tuned detector model REF. 9
 - Constraints on external backgrounds: smaller than nominal
- Scintillator Phase
 - Tracking background and light levels throughout operations
 - High but decreasing level of Po210
 - BiPo214/212 segments of Uranium and Thorium chains at low level:
 - Eq. 238 U ~ 4.3×10^{-17} g/g _ଅ ଅ
 - Eq. 232 Th ~ 5.3×10^{-17} g/g

0.7

0.6

SOLAR NEUTRINOS, WATER PHASE

- New analysis of 126.6 kt.days, including 190.3 days of low background data
 - Radon in water $\sim 6 \times 10^{-15} \text{ gU/g}$
 - Lowest background for water Cherenkov detectors > 5 MeV: 0.32 ± 0.07 ev/kt.days

J. Maneira (LIP)

- Results
 - 3.5 MeV threshold, but large uncertainties in first bins
 - Best-fit flux consistent (inc. oscillations) with other experiments, and HZ and LZ solar models

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

SOLAR NEUTRINOS, SCINT. PHASE

POSTER 544 / D. COOKMAN

- Analysis of ⁸B ES interactions in 138.9 live days of scint. data
- Fitted oscillation parameters compatible with global fits

J. Maneira (LIP)

Strict fiducial volume cut opens prospects for future sensitivity < 3 MeV!²³²Th still dominates 3-5 MeV regions, but multisite discriminant will help

POSTER 255 / A. INÁCIO, R. HUNT-STOKES

CHARGED CURRENT ON CARBON-13

- As yet unobserved reaction of electron neutrinos on Carbon-13 **REF. 10**
- Only 1.1% isotopic abundance, but cross section $\sim 12 \times$ higher than ES at ⁸B v energies

13N

e

J. Maneira (LIP)

 $\nu_{e} + {}^{13}C$

- Cosmogenic backgrounds from ¹¹Be: negligible at SNOLAB depth
- Dominant accidental backgrounds determined by data-driven method
 - Randomly pick fake prompt, then search for delayed signal candidates

POSTER 416 / G. MILTON

CC ON CARBON-13, RESULTS

- Cuts optimised prior to "blind box" opening:
 - Fiducial volume: R < 5.3 m
 - Prompt energy: 5.0 < E(e) < 15.0 MeV
 - Delayed energy: $1.14 \le E(e^+) \le 2.2 \text{ MeV}$
 - $\Delta R < 0.36 \text{ m}$
 - $0.01 < \Delta T < 24 \min$
 - Likelihood ratio analysis
 - Wider cuts on Delayed energy, ΔR , ΔT
 - Likelihood ratio discriminant> 4

EXPECTED	BOX	LIKELIHC
BACKGROUND	0.31	0.17
SIGNAL	1.83	1.79

150.51 live days

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

2 events found !

REACTOR ANTINEUTRINOS ANALYSIS

- Following first detection in a water Cherenkov detector, new results from partial and scint phases
- Main background: (α ,n) reactions on ¹³C
 - αs from high rate ²¹⁰Po decays
- Partial fill: 114 t.y exposure, 85 Hz of ²¹⁰Po
 - Stats and background-limited

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

$$\overline{v}_e + p \rightarrow e^+ + n$$

$$n + p \rightarrow^2 H + \gamma(2.2MeV)$$

Prompt spectrum @ SNO+ with sharp features, due to few baselines Potential to shed light on solar-KamLAND tension

REACTOR ANTINEUTRINOS RESULTS

Scint. phase: 286 t.v exposure, 38 Hz²¹⁰Po

- Still stats limited, but lower (α, n) background
- Geo-nu 64+/- 44 TNU, will improve soon with (a,n) classifier poster 483/ J. PAGE
- Unconstrained oscillation fit

• ~1.3 σ from solar only, <1 σ from KL

FUTURE EXPERIMENTS

HYPER-KAMIOKANDE

J. Maneira (LIP)

TALK 646/ S. MORIYAMA

Largest ever (solar) neutrino detector, starting 2027 • Less deep than SK: higher cosmogenic backgrounds, but have several methods to tag the showers

• Huge statistics: $\sim 5 \ ^8B \nu/hour$

• If Δm_{21}^2 is that of solar best fit, 5 σ on day-night effect. • If the threshold is 3.5 MeV, 5 σ on low energy upturn

• $2-3 \sigma$ measurement of hep vs as well

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

DUNE

Phase-I, starting 2029

- Phase-II

J. Maneira (LIP)

TALK 645/ C. MARSHALL POSTER 87/ S. CORCHADO THANKS TO I. BOTELLA, C. CUESTA Two largest LAr TPCs ever built: ~ 27 kton active vol. (comb.) Recent progress in low energy reconstruction: $\sim 16\%$ resolution High ⁸B stats $\rightarrow 3 \sigma$ solar/reactor Δm_{21}^2 discrimination High x-section on Ar, kinematics favorable for hep discovery

very active R&D to improve LE performance

UNO

- Largest liquid scintillator detector, starting this year
 - Radiopurity control: materials 15% better than spec.
 - Scintillator purification similar to Borexino, goal to achieve 10-17 g/g in U/Th
 - High rate of cosmogenics ($\sim 7 \times$ more than Borexino): assuming similar tagging efficiencies

J. Maneira (LIP)

TALK 609/ J. CAO G. RANUCCI

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

THANKS TO

600 m overburden

JUNO PROSPECTS ON SOLAR NEUTRINOS

- Low energy ⁸B spectral measurement (+ day-night), constraining upturn and oscillation parameters
- 7Be rate $< 1^{\circ}/_{\circ}$
- pep rate $< 10^{\circ}/_{\circ}$
- CNO similar to BX

JUNO SOLAR NEUTRINO POSTERS: 240 / D. BASILICO, 286 / J. ZHAO, 330 / M. MALABARBA

THANKS TO G. RANUCCI

J. Maneira (LIP)

Observed/Predicted(unoscillated)

JINPING NEUTRINO EXPERIMENT

China Jinping Underground Laboratory (CJPL), deepest UG lab in the world Cavity ready, construction soon Acrylic vessel ~ 10 m diameter 500 m3 • Target density +/-20% (w/r to water). Start with water, then possibly slow-LS, LiCl-LS or TeLS or NdLS

THANKS TO S. CHEN

J. Maneira (LIP)

Currently testing new PMTs and electronics at

THEIA

Hybrid Cherenkov+scintilation detection combines high light yield and directionality R&D on Cherenkov/scintillation separation: fast sensors, slow scintillator, dichroicon (ANNIE, EOS, BUTTON) Targeting precision CNO and sensitive probe of vacuum/matter transition region. Directionality provides powerful discriminant

Timing

"instantaneous chertons" vs. delayed "scintons" \rightarrow ns resolution or better

J. Maneira (LIP)

Spectrum

UV/blue scintillation vs. blue/green Cherenkov \rightarrow wavelength-sensitivity

Angular distribution

increased PMT hit density under Cherenkov angle \rightarrow sufficient granularity

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

POSTERS 578/ L. LEBANOWSKI, 596 / T. KAPTANOGLU

REF. 16,17

THANKS TO OREBI GANN G.

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

30

J. Maneira (LIP)

ΟυΤΙΟΟΚ

OUTLOOK

- Brilliant (pun intended!) history of solar neutrino physics is not over yet New/recent results from Super-Kamiokande and SNO+
- - SK: high stats, low threshold, day/night provide strong constraints on oscillations
 - SNO+: lowest backgrounds for $^{8}B v > 5$ MeV in water, new results for ^{8}B ES in scint., first indication of CC reaction on ¹³C, new results with reactor antineutrinos
- Future very large detectors
 - huge increase in stats: upturn, day-night, possible observation of hep (HK, DUNE) future liquid scintillator detectors will improve at low energies too, with varied strategies
 - - large volume, high purity (JUNO)
 - deepest location and scintillator loading (JNE)
 - directionality (Theia)
 - topology discrimination and scintillator loading (CLOUD)

- updates, insights and clarifications on the other experiments:
 - SK: M. Smy
 - HK: F. Di Lodovico, S. Moriyama, T. Yano
 - DUNE: C. Cuesta, I. Botella, S. Corchado
 - JUNO: G. Ranucci
 - Theia: G. Orebi Gann
 - Inping: S. Chen
 - CLOUD: A. Cabrera

• Thanks to the whole SNO+ Collaboration and to many colleagues that provided results,

Supported by FCT, Portugal, project PTDC/FIS-PAR/2679/2021

REFERENCES

[1] N. Vynioles et al., <u>ApJ 835 202 (2017)</u> [2] Esteban et al, J. High Energ. Phys. 2020, 178 (2020), Nufit 5.3 updates (2024) [3] M. Maltoni et al., <u>Eur. Phys. J. A 52 (2016) 87</u> [4] SK Collab., <u>Phys.Rev.D 109 (2024) 9, 092001</u> [5] SK Collab., <u>arXiv:2311.01159</u> (2023) [6] SNO+ Collab., <u>JINST 16 (2021) 08, P08059</u> [7] SNO+ Collab., <u>JINST 16 (2021) 05, P05009</u> [8] D. Auty et al., <u>Nucl.Instrum.Meth.A 1051 (2023) 168204</u> [9] SNO+ Collab., <u>JINST 16 (2021) 10, P10021</u> [10] T. Susuki et al., <u>Phys. Rev. C 86, 015502</u> [11] SNO+ Collab., <u>arXiv:2405.19700</u> (2024) [12] M. Smy for the HK Collab., <u>Phys. Sci. Forum 2023, 8(1), 41</u> [13] JUNO Collab., ApJ 965 122 (2024) and arXiv:2303.03910v1 [14] J. Beacom et al., <u>Chinese Phys. C 41 023002 (2017)</u> [15] W. Shao et al., <u>Eur. Phys. J. C 83, 799 (2023)</u> [16] Theia Collab., Eur. Phys. J. C 80, 416 (2020) [17] B. J. Land et al., <u>Phys. Rev. D 103</u>, 052004 (2021) [18] LiquidO Collab., <u>Commun.Phys. 4 (2021) 273</u>

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

EXTRA

SNO+ Collab., <u>Phys.Rev.D 109 (2024) 7, 072002</u>

- Slow scintillation leads to good separation between Cherenkov and scintillation photons
- Early data with low PPO (0.6 g/L)
 - Reasonable light yield (300 pe/MeV)
 - Slow timing $\tau = 13.5$ ns (first comp.)

J. Maneira (LIP)

First event-by-event reconstruction of direction in high light yield scintillator!

SNO+

Observed events prompt energy: 10.7 and 8.1 MeV

• Likelihood ratio:

- Fiducial volume: R < 5.3 m
- Prompt energy: 5.0 < E(e) < 15.0 MeV
- Delayed energy: $1.0 < E (e^+) < 2.2 \text{ MeV}$
- Delta R < 1 m
- 0.01 < Delta T < 60 min
- Likelihood ratio > 4

SNO+ SOLAR WATER PHASE

THEIA

J. Maneira (LIP)

