Review of Diffuse SN Neutrino Background

Masayuki Harada

ICRR, University of Tokyo, Japan (<u>mharada@km.icrr.u-tokyo.ac.jp</u>)

NEUTRINO 2024 S10: Neutrino Cosmology, June 20th, 2024 @Milan, Italy

- Diffuse Supernova Neutrino Background (DSNB)
 - Introduction to DSNB
 - Importance of DSNB flux measurement
 - Current theoretical predictions of DSNB flux
- DSNB searches
 - Detection approach
 - Current status of DSNB searches and next-generation experiments
 - Latest Super-Kamiokande result with Gd

Neutrinos from Supernova Source of Diffused Supernova Neutrino

Core-Collapse Supernova (**CCSN**)

- Release ~10⁵³ erg of gravitational energies as neutrino emission
- Neutrino observation from CCSNe provides a lot of physics However, nearby CCSNe are very rare

DSNB: Physics insight What information DSNB flux provide

DSNB: "Relic" neutrinos from past all distant CCSNe

SN rate

Various effect depending on the redshift (z) contribute DSNB flux

DSNB: flux prediction What information DSNB flux provide

SN rate

- Depends on the star formation history
 - Star formation rate
 - Failed CCSNe rate; BH formation rate
 - Binary star formation effect

SN ν emission

- Flux is averaged due to integration, However…
 - Typical CCSN neutrino spectrum
 - Neutrino oscillation inside the star
 - Neutrino decay, and other NSI

DSNB: Detection How we can detect DSNB

Detection channel

• Inverse beta decay (IBD): $\bar{\nu}_e + p \rightarrow e^+ + n$

- Large cross-section in DSNB energy region
- Simple topology with one e+ and n
 Coincidence detection reduces enormous background
- Expected event rate: 0.13 event /kton/yr
 Large volume and high background reduction is required to search DSNB due to its low event rate

DSNB searches Highlight of recent search and prospects

Status of DSNB search

- Representative detectors
 - Liquid scintillator (LS): KamLAND(1 kt), Borexino (O(100) t)
 - Water-Cherenkov (WC): Super-Kamiokande(22.5 kt), SNO(0.7 kt)
 - Gd loaded WC detector: **SK-Gd**

- Next-generation experiments for DSNB observations
 - WC: Hyper-Kamiokande
 - LS: JUNO

DSNB searches Highlight of recent search and prospects

Status of DSNB search

- Representative detectors
 - Liquid scintillator (LS): KamLAND(1 kt), Borexino (O(100) t)
 - Water-Cherenkov (WC): Super-Kamiokande(22.5 kt), SNO(0.7 kt)
 - Gd loaded WC detector: **SK-Gd**

- Next-generation experiments for DSNB observations
 - WC: Hyper-Kamiokande
 - LS: JUNO

DSNB searches Highlight of recent search and prospects

Status of DSNB search

- Representative detectors
 - Liquid scintillator (LS): KamLAND(1 kt), Borexino (O(100) t)
 - Water-Cherenkov (WC): Super-Kamiokande(22.5 kt), SNO(0.7 kt)
 - Gd loaded WC detector: **SK-Gd**

- Next-generation experiments for DSNB observations
 - WC: Hyper-Kamiokande
 - LS: JUNO

Future experiments Larger DSNB detectors

Hyper-Kamiokande

(Moriyama, Plenary 646)

(Beauchene, Poster 218)

- 258 kton WC detector@Kamioka, Japan
- Start from 2027
- expected to >4 σ in 10 yr due to its largest volume and upgraded photosensor

Future experiments Larger DSNB detectors

(Jun, plenary 709)

- 20 kton LS detector@Jianmen, China Finish construction in 2024
- → S/B ~ 3.5
- 5σ with 10 yr for optimistic prediction

<u>JUNO</u>

JUNO

80% of signal efficiency and effective background reduction using muon veto and PSD method

Latest Super-Kamiokande result with Gd

Super-Kamiokande The world largest underground water Cherenkov detector

- Super-Kamiokande (SK): WC detector
 - Location: 1000 m underground@Kamioka mine, Japan
- Phase: exposure with 22.5 kton times…
 - No neutron tagging (1996 2008): 3033 d (SK-I III)
 - pure-water with neutron tagging (2008 2018): 2970 d (SK-IV)
 - Gd-loaded water with neutron tagging (2020-present): >956 d (SK-VI, VII)

Beacom and Vagins (2004)

DSNB search in SK-Gd Signal and background

DSNB search in SK-Gd Signal and background

➡ Dominant < 20 MeV</p>

DSNB search in SK-Gd Signal and background

SK-Gd first result of DSNB search Quick analysis for proving power of neutron tagging with Gd

Highlight:

13

Latest analysis of SK-Gd Analysis improvement

SK-Gd continued observation and acquired additional 404 days with 0.03w% Gd (SK-VII) → Totally 956 days of SK-Gd data

Analysis Improvement (Santos et al., poster 637)

- Developed new reduction for NCQE event using gamma-ray cut variable
 - → Further reduced ~90% of NCQE
- Developed new neutron tagging methods based on multivriate analysis,
 - Search neutrons with 500 μs window ➡ achieving >60% efficiency in SK-VII

Results SK-Gd energy spectrum

Differential flux upper limits Spectral-independent analysis

Highlight:

- 956 days of SK-Gd with Gd 0.01%(552 d)+0.03%(404 d) Spectrum independent analysis
 - Only use $N_n = 1$ events
 - Differential upper limit for $9.3 < E_{\nu} < 31.3$ MeV

Tension from zero assumption Spectral-fitting analysis

<u>Spectrum fitting analysis to extract significance</u>

- Total 6779 days of SK (5823 d pure-water and 956 d Gd-water) combined
- Analysis threshold: $E_{\nu} > 17.3$ MeV
- Suppress uncertainty of background prediction by fitting both $N_n=1$, $N_n \neq 1$

- Sensitivity of SK-Gd ~1000 days exposure is already comparable level it with ~6000 days of pure-water SK
- Best fit of whole SK observation is 1.4^{+0.8}-0.6 cm⁻² s⁻¹ for $E_{\nu} > 17.3$ MeV
 - \Rightarrow exhibit ~2.3 σ excess!!

Summary

- DSNB flux keep valuable information about not only the supernova neutrino flux, but also the history of star formation and cosmic-expansion
- World wide neutrino detectors sensitive to a few tens MeV work to observe DSNB
- In recent progress, SK experiment published first result in SK-Gd era
- Also, the latest update of DSNB search in SK-Gd using additional more condensed Gd-water data are exhibited → There is no significant DSNB signal, however, some excess appears to be visible in the signal region, which is 2.3 σ tension from non-DSNB hypothesis
- Looking forward to discovery of DSNB in the next decade !!

Spectrum fitting

SK-IV

20

Spectrum fitting

SK-VI

21

Spectrum fitting

SK-VII

Background: Muon spallation products (9Li)

Cosmic-muon comes with ~2 Hz at SK site → Decays from broken up isotopes are fake low-energy event (x10⁶ as DSNB rate !!)

- Lithium-9 (${}^{9}Li$)

 - →Remaining background

23

Background: Atmospheric neutrinos

- Neutral-Current Quasi-Elastic (NCQE) interactions
 - De-excitation gamma-ray (dominant < ~20 MeV)
- non-NCQE interactions
 - Decay electron (from invisible muon) + n NCQE

non-NCQE (CCQE)

Background: NCQE event reduction

- Reduce by Cherenkov angle
 - NCQE events tend to have larger angle

NCQE

Tagging efficiency vs mis-ID rate

