NEUTRINOS FROM CORE COLLAPSE SUPERNOVAE (SNe)

Cecilia Lunardini

Arizona State University

Topics

- Introduction
- overview and highlights^{*}
 - Theory
 - Experiment
- Synergies, new directions
 - Connections with HEP, astro
- Discussion

First and only SN nu detection: SN1987A

Introduction

Stellar death

- $M \gtrsim 8 M_{sun}$: iron core forms
- Loss of pressure → core collapses into proto-neutron star (PNS)
- O(10) s neutrino burst cools the PNS
 - $L_v \sim G M_f^2/R_f G M_i^2/R_i \sim 3 \ 10^{53}$ ergs ($R_f \sim 10 \text{ Km}$)
- (revived) shockwave drives explosion of star

Neutrino cooling and heating

- *v thermalize* in ultra-dense matter
 - Surface emission of v_e , \bar{v}_e , v_x , \bar{v}_x (x=µ, τ)
 - Approx. thermal spectrum, E \sim 10-20 MeV
 - ordering of spectra due to different decoupling radii:

 $\langle E_e \rangle \lesssim \langle E_{\bar{e}} \rangle \lesssim \langle E_x \rangle$

Fig: Maria M. Saez, Universe 2023, 9(11)

- v heating helps launch stalled shock
 - Competition with mass accretion

Figure: Amol Dighe, talk at WHEPP XV, 2017

Direct narrative of near-core physics

Figure from Roberts and Reddy, Handbook of Supernovae, Springer Intl., 2017

Status and highlights: theory

Numerical simulations: progress toward 3D

- Understanding neutrino-driven shock-revival: from 2D to 3D
 - neutrino heating efficiency increased by multi-D effects: convection, Standing Accretion Shock Instability (SASI)
 - Characterize failed revival (black hole formation)

arameter

• Identify key dependences (e.g., compactness: $\xi_{2.5} = \frac{M/M_{\odot}}{R(M=2.5 \ M_{\odot})/1000 \ km}$)

FORNAX 2D multi-second simulations, M=9 – 27 M_{sun}

Vartanyan and Burrows, MNRAS 526 (4) (2023) 5900–5910 ; Plot from public data: https://dvartany.github.io/data/

<u>References</u> (representative papers only):

3DnSNe : Nakmura, Takiwaki, Kotake, MNRAS 514 (2022) 3, 3941-3952; Matsumoto, Takiwaki, Kotake, MNRAS 528 (2024) L96

3DGRMHD : Shibagaki, Kuroda, Kotake, Takiwaki and Fischer, *MNRAS*, (2024) stae1361

CHIMERA : Bruenn, Blondin, Lentz, Messer et al., ApJ., Suppl. 248 (1) (2020)

FLASH-M1 : O'Connor, *ApJ.Suppl.* 219 (2015) 2, 24 ; O'Connor and Couch, *Astrophys.J.* 865 (2018) 2, 81

FORNAX : Vartanyan and Burrows, MNRAS 526 (4) (2023) 5900–5910

VERTEX : Bollig, Yadav, Kresse, Janka, Mueller and Heger, ApJ. 915 (1) (2021) 28.

Flavor conversion

Interplay of frequencies

• Vacuum: $\omega_{ij} = \Delta m_{ij}^2/2E$

• ν -matter scattering: MSW effect $\lambda = \sqrt{2}G_F n_e$

• $\nu - \nu$ scattering : $\mu \simeq \sqrt{2}G_F n_{\nu}^{\text{eff}}$

collective oscillations, *no general solution*, work in progress

Duan, Fuller & Qian, PRD74 (2006), Duan et al., PRD74 (2006)

Collective oscillations: r

- Impact on r-process nucleosynthesis
- Fast mode (r < 100 Km) : impact on shock-revival
 - Increased or de-creased neutrino heating behind shock (depending on progenitor star)

<u>References</u> (representative papers only):

Poster: M.J. Ferreira Leite

Zaizen and Nagakura, *PRD* 107 (2023) 12, 123021 ; Nagakura, *PRD* 108 (2023) 10, 103014 ; Akaho, Liu, Nagakura, Zaizen and Yamada, PRD109, no.2, 023012 (2024)

Xiong, Wu, Abbar, Bhattacharyya, George, et al. PRD 108 (2023) 6, 063003

Cornelius, Shalgar and Tamborra, JCAP02, 038 (2024)

Grohs, Richers, Couch, Foucart, Froustey, Kneller and McLaughlin, ApJ 963, no.1, 11 (2024) ; Froustey, Richers, Grohs, Flynn, Foucart, Kneller McLaughlin, PRD109, no.4, 043046 (2024)

Matter-driven conversion

- adiabatic resonant conversion
 - For Fe-core SNe, before shockwave effects
- Unique: H-resonance driven by θ_{13}
 - Requires $ho{\sim}10^3~g~cm^{-3}$
 - $v_e \rightarrow v_3$ (normal ordering)

 $p \sim sin^2 \theta_{13} \sim 2 \ 10^{-2} \rightarrow \text{complete } \nu_e \text{ conversion!}$

Complexities...

- Resonant interplays of collective and matter-driven effects
- Late time/large radii phenomena
 - Adiabaticity breaking at shockwave front
 - Turbulent matter density profile behind shock
 - Decoherence
- Progenitor-dependent effects
 - non-adiabatic H-resonance in ONeMg-core Sne
- Oscillations in Earth

overview and highlights: experiments

Real-time detectors with spectrum sensitivity

- Water Cherenkov, liquid scintillator
 - $ar{
 u}_e + p
 ightarrow n + \ e^+$ (main)
 - ν_{α} + $e^- \rightarrow \nu_{\alpha}$ + e^-
 - $ar{
 u}_e$, u_e CC on nuclei
- Liquid Argon
 - $v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$ (main) • $\bar{v}_e + {}^{40}Ar \rightarrow e^+ + {}^{40}Cl^*$ • $v_{\alpha} + e^- \rightarrow v_{\alpha} + e^-$
- Ice/seawater
 - $\bar{\nu}_e + p \rightarrow n + e^+$
 - *luminosity only, background-limited

Experiment	Type	Mass [kt]	Location	events
Super-K	$\mathrm{H}_{2}\mathrm{O}/\bar{\nu}_{e}$	32	Japan	4000/4100
Hyper-K	$\mathrm{H}_{2}\mathrm{O}/\bar{\nu}_{e}$	220	Japan	$28\mathrm{K}/28\mathrm{K}$
IceCube	$\mathrm{String}/\bar{\nu}_e$	2500*	South Pole	$320\mathrm{K}/330\mathrm{K}$
m KM3NeT	$\operatorname{String}/\bar{\nu}_e$	150*	Italy/France	$17\mathrm{K}/18\mathrm{K}$
LVD	$C_n H_{2n} / \bar{\nu}_e$	1	Italy	190/190
KamLAND	$C_n H_{2n} / \bar{\nu}_e$	1	Japan	190/190
Borexino	$C_n H_{2n} / \bar{\nu}_e$	0.278	Italy	52/52
JUNO	$C_n H_{2n} / \bar{\nu}_e$	20	China	3800/3800
SNO+	$C_n H_{2n} / \bar{\nu}_e$	0.78	Canada	150/150
$NO\nu A$	$C_n H_{2n} / \bar{\nu}_e$	14	USA	1900/2000
Baksan	$C_n H_{2n} / \bar{\nu}_e$	0.24	Russia	45/45
HALO	Lead/ν_e	0.079	Canada	4/3
HALO-1kT	Lead/ν_e	1	Italy	53/47
DUNE	Ar/ν_e	40	USA	2700/2500
MicroBooNe	Ar/ν_e	0.09	USA	6/5
SBND	Ar/ν_e	0.12	USA	8/7
DarkSide-20k	Ar/any ν	0.0386	Italy	-
XENONnT	Xe/any ν	0.006	Italy	56
LZ	Xe/any ν	0.007	USA	65
PandaX-4T	Xe/any ν	0.004	China	37

Table: Al Kharusi et al., New J. Phys. 23 031201 (2021) D=10 kpc. **bold** : operating detectors as of 2021

What can we learn?

 Flavor composition, spectra, luminosities

- Time evolution of near-core physics
 - Accretion, cooling, etc.

 Tests of physics Beyond the Standard Model

Future detectors: complementarity

- DUNE (LAr)
 - Sensitivity to v_e : v_e from electron capture, θ_{13} -driven resonance (v_e disappearance)

Fig: DUNE collab. Eur. Phys. J.C 81 (2021) 5, 423

- HyperKamiokande (Water Cherenkov)
 - Largest mass (M~220 kt) → extend sensitivity distance to Mpc scale; reach M31 galaxy

Poster: F. Nakanishi

Fig. from H. Sekiya, 2017 J. Phys.: Conf. Ser. 888 012041

Poster: K. Saito (Kamland + SuperK)

- JUNO (Liquid scintillator)
 - Low energy threshold → pre-SN neutrinos (~ 1 day before collapse), late time spectra, etc.
 - high energy resolution \rightarrow spectral features due to oscillations, BSM, ...

Fig: JUNO coll., JCAP 01 (2024) 057

Multi-detector/multimessenger coordination

Al Kharusi et al., New J. Phys. 23 031201 (2021) ; SNEWPY at https://github.com/SNEWS2/snewpy Fig. from Brdar, Lindner, Xu, JCAP 1804 (2018) 025

Synergies, new directions

Synergy with gravitational waves (GW)

- GW from near-core dynamics, f = O(100) Hz
- likely to be observed at LIGO-Virgo-KAGRA for galactic SN

Fig. from Mezzacappa et al., (2023), PRD 107 (4), 043008

GW + neutrinos: enhanced potential

- Improve alert: timing, localization
- test near-core physics: SASI, neutron star cooling, ...

Kuroda, Kotake, Hayama and Takami, ApJ, 851:62, 2017 (fig. credit) Lin, Rijal, Lunardini, Morales and Zanolin, *PRD* 107 (2023) 8, 083017 Drago, Andresen, Di Palma, Tamborra and Torres-Forne', PRD 108, 10, 103036 (2023)

Testing for new physics: what if....

- Suppressed neutrino emission?
 - Extra cooling due light particles: sterile neutrinos, axion-like particles, ...
- Anomalous flavor composition at Earth?
 - Neutrino decay, e.g., $\nu_3 \rightarrow \nu_1$
 - Oscillations due to non-standard interactions
- Spectral distortions?
 - Exotic absorption channels (scattering on Dark Matter)
 - Oscillations due to non-standard interactions
- Anomalous time delays?
 - Lorentz-violation, ...

• Magnetic Moment of Dirac neutrinos + "twisting" magnetic field Jana and Porto, PRL 132 (2024) 10, 101005

Discussion

From one to many: toward a population study

- The future: global analysis of multiple data sets
 - Test stellar population
 - Disentangle stellar physics from neutrino/particle physics

Questions for future study

- Are we prepared for the next galactic supernova?
 - Will decision-making be fast enough?
 - What if it's very close to Earth (Betelgeuse, etc.)?
 - Public impact of early warning?

- Numerical simulations: neutrino-focused developments
 - What's the next most important improvement, and how long will it take?

- What near-core quantities can be measured with neutrinos + GW + astro?
 - Properties of core's nuclear matter (Equation of State, etc.)
 - Existence and features of hydrodynamic phenomena in the accretion phase (SASI, etc.)
 - Shockwave propagation parameters
- How well can we test flavor conversion?
 - Can we measure conversion probabilities?
 - use time evolution to disentangle neutrino-driven oscillations from matter effects?

Thank you!

SNEWS 2.0 coll.

1987 alert

NIV OF PENN - DEPT OF PHYSICS P.01 TO; EUGENE BEIER SENSATIONAL NEWS ! SUPERNOVA WENT OFF 4-7 DAYS AGO IN LARGE MAGELLENIC CLOUD, SO KAC AWAY . NOW VISIBLE MADNITUDE 4N5, WILL REACH MAXIMUM MACNITUDE (-100) IN A WEEK. THIS IS WHAT WE HAVE CAN YOU SEE IT ? BEEN WAITING 350 YEARS FOR ! SID BLUDMAN (215) 546-3083

https://www-sk.icrr.u-tokyo.ac.jp/en/news/detail/324

20xx alert 17:30 ••1 5G 35+ Thursday 20 June Notification Centre SNEWS TEST COINC #1000463 16:00:01 UT 30m ago RA=Un Dec=Un Err=360 Detector_B Good, Detector_A Good, Detector_D Possible, Detec... SNEWS 0 Courtesy of Jost Migenda,

BACKUP

FORNAX 2ν multi-second simulations, $1 \nu i - \nu = 27 M_{sun}$

D. Vartanyan, A. Burrows, MNRAS 526 (4) (2023) 5900–5910 ; data available at https://dvartany.github.io/data/

Flavor conversion: Hamiltonian

$$\begin{split} F_e &= p F_e^0 + (1-p) F_x^0 \\ H_E &= H_E^{\text{vac}} + H_E^m + H_E^{\nu\nu} \\ H_E^{\text{vac}} &= \mathsf{U} \operatorname{diag} \left(-\frac{\omega_{21}}{2}, +\frac{\omega_{21}}{2}, \omega_{31} \right) \mathsf{U}^\dagger , \\ H^m &= \sqrt{2} G_F \operatorname{diag}(N_e, 0, 0) \\ H_E^{\nu\nu} &= \sqrt{2} G_F \int dE' (\rho_{E'} - \bar{\rho}_{E'}) (1 - \cos \theta) \end{split}$$

vacuum

 ν -matter scattering: MSW effect

v - v scattering : collective oscillations, no general solution

 θ = angle between incident momenta

Wolfenstein, PRD 17 1978, Mikheyev & Smirnov, Yad. Fiz. 42, 1985 ; Duan, Fuller & Qian, PRD74 (2006), Duan et al., PRD74 (2006)

Matter-driven conversion and mass ordering

Complexities...

Table 4.1: Known types of neutrino flavor oscillations that can occur in CCSNe and in BNSMs (first column). The second column labels whether a given type is of collective nature or not. The third to sixth columns denotes whether they affect the physical processes and/or nucleosynthesis outcome. The symbols \checkmark , \bigstar , and ? stand for "yes", "no", and "not explored yet" respectively.

Type	Collective?	SN explosion	SN ν wind nucleosynthesis	$\nu~{\rm process}$	BNSM r -process
Slow mode	\checkmark	×	maybe	\checkmark	×
Fast mode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Synchronized MSW	\checkmark	×	×	×	×
Matter neutrino resonance	\checkmark	×	×	×	maybe
Collisional induced	\checkmark	?	?	?	likely
MSW transformation	×	×	×	\checkmark	×
Parametric resonance	×	×	×	?	×

DUNE sensitivity to SN neutrinos

• **DUNE Far Detector** employs liquid argon TPC (LArTPC) technology that allows excellent 3D imaging with few mm resolution, excellent energy measurement, and particle identification.

- Placed 1,5 km deep underground at **SURF** (Lead, SD).
- **4 x 17 kton modules** in phased approach for DUNE FD:
 - Phase I: FD-1 horizontal drift LArTPC, FD-2 vertical drift LArTPC.
 - Phase II: FD-3 & FD-4 with possible enhanced low energy physics capabilities.
- **Measurement of core-collapse SN** ν 's in DUNE will provide information about:
 - **Supernova physics**: Core collapse mechanism, SN evolution in time, black hole formation.
 - **Neutrino physics:** v flavor transformation, v absolute mass, other v properties.
- **Diffuse background supernova** ν's are also potentially detectable.
- DUNE will have burst pointing resolution (~5 deg) and participate in SNEWs.

ν events for different SN models in 40 kton LAr & 10 kpc SN

Channel	Liver-more	GKVM	Garching
$v_e + {}^{40} \mathrm{Ar} \to e^- + {}^{40} \mathrm{K}^*$	2648	3295	882
$\overline{\nu}_e + {}^{40} \operatorname{Ar} \rightarrow e^+ + {}^{40} \operatorname{Cl}^*$	224	155	23
$\nu_X + e^- \rightarrow \nu_X + e^-$	341	206	142
Total	3213	3656	1047

 ν_e flavor dominates \rightarrow LAr only future prospect for a large, cleanly tagged SN ν_e sample, which dominates in neutronization phase.

courtesy of D. Pershey and C. Cuesta on behalf of the DUNE collaboration

Michel e- in ProtoDUNE-SP data

- Energy resolution: ~10-20%
 - MARLEY

DUNE collab. Eur. Phys. J.C 81 (2021) 5, 423

Supernova burst searches

SuperK IV archival search : SNR(D<100 kpc) < 0.29 yr⁻¹

M. Mori et al. (SuperK coll.) Astrophys.J. 938 (2022) 1, 35

Rozwadowska, Vissani and Cappellaro, New Astron. 83 (2021), 101498

Preparedness: pre-SN neutrinos sensitivity

- Alert ~12 hours pre-collapse, for 15 Msun star at D=150 pc (e.g., Betelgeuse)
- SuperK-Gd at 0.033% Gd concentration

SuperK + KAMLAND, Abe et al., arxiv:2404.09920 ; see also Machado et al., Astrophys. J., 935, 40

Preparedness: near-Earth supernova

- Danger of Data Acquisition System overload!
 - New SuperK preotection module with veto

M. Mori et al. (SuperK. coll.), arxiv:2404.08725

Super-Gd loading progress

Li, Vagins and Wurm, Universe 8 (2022) 3, 181

DSNB - limits

- SuperK-Gd, 0.01% Gd (capture efficiency 50%)
 - Increased to 0.033% in 2024 (eff. 75%)
 - target is 0.1% (eff. 90%)

Machine Learning and DSNB

- Use Convolutional Neural Network for NC background reduction at SuperK-Gd
 - O(10²) abatement
 - Maintain 96% signal efficiency

Maksimovic, Nieslony and Wurm, JCAP 11 (2021) 11, 051